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Abstract 

The use of transdermal alcohol monitors has burgeoned in recent years, now encompassing 

hundreds of thousands of individuals globally. A new generation of sensors promises to expand 

the range of applications for transdermal technology exponentially, and advances in machine 

learning modeling approaches offer new methods for translating the data produced by 

transdermal devices. This article provides 1) a review of transdermal sensor research conducted 

to date, including an analysis of methodological features of past studies potentially key in driving 

reported sensor performance; 2) updates on methodological developments likely to be 

transformative for the field of transdermal sensing, including the development of new-generation 

sensors featuring smartphone integration and rapid sampling capabilities as well as developments 

in machine learning analytics suited to data produced by these novel sensors and; 3) an analysis 

of the expanded range of applications for this new generation of sensor, together with 

corresponding requirements for sensor accuracy and temporal specificity. We also note questions 

as yet unanswered and key directions for future research. 

Keywords: Alcohol, biosensor, machine learning, transdermal sensors, time series 

analysis  
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Introduction 

A reliable alcohol biosensor could constitute a critical step towards helping individuals 

make informed decisions about their drinking and, ultimately, towards curbing problematic 

alcohol use (1,2). Transdermal sensors offer a uniquely non-invasive and low-cost method for 

assessing drinking, and thus the prospect of transdermal measurement of alcohol consumption 

has been met with tremendous enthusiasm (3,4). Enthusiasm increased as research emerged 

indicating that transdermal ankle bracelets could be used to effectively monitor alcohol 

abstinence within criminal justice (5) and specialized treatment contexts (6), with the use of 

these abstinence monitors quickly burgeoning to encompass over 800,000 individuals globally 

(7). Over time, however, it has become apparent that the relationship between transdermal 

alcohol concentration (TAC) and blood alcohol concentration (BAC) is highly complex. Thus, 

the task of translating transdermal sensor data into more fine grained estimates of alcohol 

consumption represents a considerable challenge (8).  

Recent years have seen remarkable developments in both transdermal sensor technology 

as well as computational modeling methods, offering the potential to address some of these 

challenges while also expanding the range of applications for transdermal devices (9,10). 

Recognition of these momentous developments for transdermal technology is evident within a 

rapidly expanding scientific literature, with five reviews of transdermal alcohol sensors 

published within the past two years alone (10–14; see also 15 for a published pre-registration). 

Yet the extant literature tells us little about the future of transdermal alcohol sensing, a question 

that looms particularly large in the face of a global pandemic that has stymied much face-to-face 

research, driving many addiction scientists to extend beyond the laboratory and embrace tools for 

measuring alcohol consumption in real-world contexts. The current review aims to provide: 1) a 
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review of transdermal sensor research conducted to date, including an analysis of methodological 

features of past studies potentially key in driving reported sensor performance; 2) information 

surrounding methodological developments likely to be transformative for the field of transdermal 

sensing; and 3) an analysis of the expanded range of applications for this new generation of 

sensor. 

The Promise of Transdermal Assessment 

 Addiction scientists have explored a variety of different methods to assess alcohol use. 

For example, self-reports can be useful for understanding broad patterns of drinking. However, 

they have the potential to be biased by several factors including alcohol-related 

memory/cognitive impairment (16,17), variability in drink strengths/sizes (variable “pours”; 

17,18), as well as demand characteristics of the assessment context (20). Breathalyzers have the 

capability to produce accurate estimates of intoxication but provide only a single estimate of 

intoxication at one point in time. Every test requires action by the user, and repeated tests require 

a wait period (21). Finally, in more recent years, microneedle arrays have come under 

development, devices that offer the advantage of direct measurement of alcohol content within 

interstitial fluid (22). However, these devices typically require application by a trained 

professional, involve regular disposal/re-application, and can cause skin irritation in some (23).  

 Above we list some of the most commonly employed existing methods of assessing 

alcohol consumption, along with one method based in developing technology. All of these 

methods are likely to gain and/or retain an important place in our toolkit of techniques for 

assessing drinking. At the same time, transdermal sensors have the potential to complement these 

tools, offering distinct advantages above and beyond extant and emerging measures. Based in 

research indicating that approximately 1% of ingested alcohol is diffused through the skin, 
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transdermal sensors assess alcohol consumption by quantifying the content of alcohol contained 

in sweat and insensible perspiration (24,25). Thus, similar to the manner in which a breathalyzer 

estimates BAC by measuring the quantity of alcohol in expired air, transdermal sensors might 

estimate BAC by examining alcohol in water vapor emitted from the skin’s surface (24). Unlike 

a breathalyzer, however, transdermal alcohol sensors have the potential to measure alcohol 

consumption discretely and continuously, without requiring any motivated action on the part of 

the user. Further, unlike self-reports, transdermal assessment is based in objective measurement 

and, unlike methods assessing BAC in interstitial fluid, it is wholly noninvasive, low-cost, and 

likely to be attractive to a wide population of drinkers. In light of these advantages, it is no 

wonder that transdermal sensors have sparked enduring interest among addiction scientists 

(3,4,10).  

The Challenge of Transdermal Assessment 

 Whereas breathalyzer readings can be translated into BAC estimates via a straightforward 

conversion factor (21), the relationship between transdermal readings and BAC is considerably 

more complex. The TAC-BAC relationship can be impacted by a variety of factors, including 

individual-difference factors that covary with physical properties of the skin (e.g., gender, race, 

age, BMI; 24,25), as well as contextual factors that affect levels of sweating (e.g., skin 

temperature, motion; 26). Thus, the relationship between TAC and BAC might differ across both 

individuals and also contexts (8,29). In addition, the process of transdermal diffusion of alcohol 

involves some degree of lag time, such that alcohol can be detected in the blood stream before it 

can be detected at the skin’s surface. Empirical studies seeking to quantify the exact degree of 

this lag time have produced highly variable findings, ranging from 30 minutes (30) to 5 hours 

(27).  
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 While the complexities of the TAC-BAC association have been apparent, also apparent 

have been limitations of research methods applied to model this relationship (9,11,31). 

Importantly, the majority of studies seeking to capture the TAC-BAC relationship have relied on 

data from a single device—the AMS SCRAMTM ankle monitor (31,32). Design features of the 

SCRAM device, which integrates a pump to actively generate airflow across the transdermal 

sensor, increase its size to a bulky 6oz (see Figure 1) and reduce its TAC sampling interval to a 

relatively sparse 30 minutes (11). Further, the relationship between TAC and BAC can vary 

depending on where on the body TAC is assessed (e.g., wrist vs. ankle, 33), and the ankle 

positioning of SCRAM could potentially impact its temporal sensitivity to changes in BAC (31). 

Indeed, transdermal devices worn around the ankle consistently produce about double the TAC-

BAC lag time as devices worn on the wrist, hand, or arm (27,31,see also 32).   

 Beyond limitations of the devices themselves, this literature is also characterized by 

limitations in methods applied to examine data from these devices. The range of statistical 

techniques employed to characterize the relationship between TAC and BAC is relatively 

narrow, relying on conventional statistical methods (e.g., regression) and/or applied mathematics 

(e.g., first principles models) (32). Our most powerful models for characterizing highly complex 

associations tend to be “data hungry” (34). With a mean sample size of less than 20 participants 

(largest objective validation study N=48) and a total of only five studies conducted in field 

settings, extant trials have been inadequately powered to model the TAC-BAC association across 

individuals and contexts (32). Such observations on the existing literature have led researchers to 

suggest that the inconsistent performance of transdermal BAC monitors in prior research may 

not reflect a failure of concept for transdermal assessment, but rather limitations of methods 

applied in this area (9–11,31). 
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A New Era for Transdermal Assessment 

The past several decades have given rise to remarkable technological and analytic 

developments. Although substantial progress has taken place across a variety of domains—

including big data analytics, miniaturization, and wireless communication—some of the more 

extraordinary of these developments have emerged within the field of portable computing 

technology (11,34,35). The use of smartphones now extends to billions of individuals globally 

(35). An estimated 81% of the US population now owns a smartphone, up from just 35% in 

2011, with the computing capabilities of the average device constantly expanding (35). We thus 

find ourselves in a strange new reality in which a sizable proportion of the world’s population 

has at their fingertips a powerful microcomputer with far ranging capabilities. Combined with 

advances in data analytic methods, the technological development and burgeoning usage of 

smartphones has the potential to represent a game-changer for transdermal sensor technology—

substantially reducing device size, reducing device cost, and also permitting the application of 

more computationally demanding models for real-time TAC data processing.  

Leveraging these advances and spurred on by interest within the addiction research 

community, a new generation of transdermal alcohol sensor has recently emerged (10,11,31,36). 

Featuring smartphone integration and sleek designs, similar to a Fitbit, these devices are intended 

to appeal to large populations of voluntary users (see Figure 1). Several new-generation devices 

exist at varying stages of development, including BACtrack SkynTM, Smart Start BARETM, and 

Milo IONTM.1 The mechanism for transdermal detection of alcohol varies across these newer 

devices—Skyn employs fuel cell based technology, whereas ION relies on enzymatic sensing 

 
1 As of the time of this writing, Skyn and ION are available for research purposes, whereas BARE is still under 
development. Progress in this area is currently moving quickly, and the next several years are likely to see new 
devices entering the marketplace. 
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(37). A key feature that unites these devices, however, is their unprecedented capability for rapid 

TAC sampling. More specifically, advances in wireless data transmission/storage and also 

transdermal sensor technology mean that new-generation sensors can sample TAC at 

approximately 90 times the rate of SCRAM devices, producing measurements as frequently as 

every 20 seconds (11). Information from relatively dense TAC time series might be used to 

address the challenge posed by contextual influences on the TAC-BAC relationship—a sudden 

spike in TAC might signal something different from a gradual rise (e.g., increase in sweating vs. 

increase in drinking). Further, and importantly, one of the more widespread applications of time 

series analysis is that of future forecasting, as time series offer information concerning not only 

where values currently are but also where they are going (38,39). Thus, information from the 

relatively dense TAC time series provided by new-generation sensors might be used to help 

collapse across the lag time between TAC and BAC and forecast estimates of alcohol 

consumption in near real-time (39).  

In addition to developments in transdermal devices themselves, recent years have also 

seen progress in analytic methods for translating data produced by these devices (40–43). In 

particular, the years since 2010 have seen substantial advances in a family of computational 

approaches known as machine learning, leading some to christen this decade the “AI Spring” 

(44,45). Machine learning methods, which have long been applied to yield predictions based on 

raw data in time series format, differ from conventional statistical approaches in that they are 

first and foremost data-driven (46,47). Rather than restricting the relationship among variables 

within a model to a pre-determined set of structures (e.g., linear, quadratic, diffusion-equation 

based), as is the case with most conventional statistical approaches, machine learning models 

instead “learn” the shape of these relationships directly from the data itself. These models can 
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thus cleave closely to data, reflecting nuanced relationships between variables in all their 

complexity—if analytic models might be considered as conforming to data like various articles 

of clothing conform to the human body, then linear regression would hang like a starched dress 

suit whereas machine learning models might hug like a leotard (see Figure 2). Machine learning 

approaches excel in contexts where the “true” relationship between predictor and outcome is 

complex/multi-dimensional, and where sufficient quantities of data exist to correctly distinguish 

between generalizable and spurious relationships. In technical terms, most machine learning 

methods have low bias (predetermined assumptions, such as expert knowledge dictating the form 

of the learned relationships) but have correspondingly higher variance (specificity to the 

particular dataset used for model fitting) (48). Thus, data must not only be sufficient in quantity 

for complex model fitting but must also be closely representative of the conditions under which 

the model will be deployed. When models are applied to new contexts, such as laboratory-

created models deployed in real-world settings, rigorous evaluation is therefore essential to 

determine whether the models will work in the new context. 

The past decade in particular has seen advances in machine learning methods that may be 

especially well suited to facilitating TAC-BAC translation. These include convolutional neural 

networks with the capability to recognize short time series patterns of virtually any shape 

(40,43), methods for automated data processing with capabilities for providing fast extraction of 

hundreds of predictors from time series data (42), as well as methods for controlling machine 

learning model complexity to avoid overfitting models to data (i.e., “regularization”; 38). 

Innovations in a family of methods called transfer learning may also help when models need to 

be adapted for new contexts (49). Advances in machine learning, and neural networks especially, 

tend to produce inscrutable models, however. These models trade increased accuracy for 
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decreased interpretability, which may limit their application in settings where explaining why a 

prediction was made is essential—for example, in legal settings where a defendant might 

question the evidence against them, or in places where people have a legal right to explanation of 

model predictions (50).  

Regarding the utility of these methods for yielding interpretable transdermal indicators of 

drinking, the bulk of validation research is yet to be done. However, data from initial research 

underscores the potential incremental validity of these new tools over extant methods. In early 

work employing single subject experimental designs, BACtrack Skyn, Quantac TallyTM,2 and 

Milo ION all demonstrated responsiveness to ingested alcohol (11,37). A study involving 30 

participants wearing both SCRAM and Skyn in the laboratory indicated strong correlations 

between Skyn and BAC and also substantially reduced lag times with Skyn vs. SCRAM (31). A 

field study (N=10) indicated Skyn detected alcohol soon after drinking onset (~30-mins), and a 

2-week feasibility study (N=12) indicated acceptability of Skyn for longer-term wear (51). Of 

particular relevance, in a study that represents the largest objective transdermal sensor validation 

study conducted to date (N=73), we applied time-series feature extraction paired with tree-based 

machine learning algorithms to Skyn data collected in the laboratory (9). Results revealed that 

highly accurate real-time estimates of BAC could be created from new-generation sensor data 

under controlled conditions (r=.91; mean absolute error=.01% BAC). Finally, although new-

generation sensors currently comprise a limited number of devices, early work indicates 

promising findings with novel prototypes, suggesting the range of available devices is likely to 

expand (52–54). To fully gauge the accuracy level of new-generation transdermal sensors, 

assessment under real-world conditions in response to variable alcohol doses will be required. 

 
2 Quantac ceased business operations in 2017. 
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Nonetheless, results of these early studies indicate transdermal devices may have capabilities 

beyond what was previously considered feasible based on research with older methods. 

Applications for New-Generation Transdermal Technology 

New-generation sensors offer a uniquely passive, noninvasive, low-cost method for 

assessing alcohol use likely to be attractive to broad populations of drinkers, including for longer 

term wear. Thus, these newer devices open up a new universe of applications for transdermal 

technology. Table 1 lists applications of new-generation sensor technology together with 

requirements for accuracy, temporal specificity, and contextual dependence associated with each 

potential application (see Table 1 for evaluation metric definitions and application requirements). 

Early validation research has examined new-generation sensor performance with respect 

to the relatively fine-grained metric of BAC, and has further been aimed at creating estimates of 

alcohol consumption in real-time (9). Importantly, however, new-generation sensors employing 

broader, category-focused drinking measures (e.g., abstinence, low risk, or high-risk drinking) 

and demonstrating lower levels of temporal specificity (e.g., retroactive day-level time locking) 

might also have a range of potential applications (see Table 1).3 For example, in the realm of 

prevention, a sleek sensor providing a day-level record of abstinence and/or high risk drinking 

events might open up new frontiers for public health initiatives by increasing awareness of 

consumption levels in broader populations of drinkers. In the realm of intervention, a 

comfortable, compact device providing objective information on drinking risk level could 

represent a significant asset to programs such as motivational enhancement therapy (55), harm 

 
3 Research with old-generation sensors already demonstrates transdermal devices are capable of providing a highly 
accurate record of alcohol abstinence (5), and early research with new-generation sensors indicates their accuracy 
level is nearly double that of older devices (9). Thus, the notion that new-generation sensors might ultimately 
provide reasonably accurate estimates of day-level drinking risk category might be considered a conservative 
prediction. 
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reduction (56), and contingency management (2) which incorporate alcohol monitoring into 

treatment as a critical change process. Finally, in the realm of research, such devices could 

represent an important advance for longitudinal studies exploring patterns of alcohol use over 

time, providing objective measures of alcohol use risk category over the course of months or 

even years and thus avoiding biases associated with retrospective recall self-report measures 

(57). 

 If results from laboratory studies extend to real-world contexts (9), it is possible new-

generation sensor data might ultimately be used to identify episodes of alcohol use in near real 

time. Such contemporaneous signals could open up far ranging possibilities for application. In 

particular, sensors providing automated real-time signals of drinking might forge new ground in 

relapse prevention by prompting intervention in real-world drinking contexts. Within the context 

of such treatments (e.g., Just-in-Time Adaptive Interventions; 47), transdermal sensors might be 

used to issue alcohol alerts to a family member, sponsor, or treatment provider when a drinking 

episode is detected, thus potentially decreasing severity and duration of relapse (58,59). Finally, 

in the context of a global pandemic that has forced many addiction scientists to push beyond the 

boundaries of the laboratory, such temporally precise sensors might have key research 

applications. Real-time alcohol biosensors could enhance basic research exploring immediate 

correlates and consequences of alcohol consumption in real-world contexts (12,60,61), including 

by triggering surveys and other data collection functions when drinking is detected.  

 Beyond these, a transdermal alcohol biosensor with a range of accuracy levels might 

enhance health and health-related research across various other domains. In the realm of motor 

vehicle safety, a device capable of reliably categorizing drinking into low vs higher risk levels in 

real-time might be used to reduce the risk of drunk driving, issuing vibrations/alarms or 
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contacting a ride-sharing service when BACs are approaching higher levels. In the medical 

realm, interventions for some of the world’s most common chronic health conditions require that 

patients moderate their alcohol intake (e.g., diabetes, cardiovascular disorders; 53,54). A 

transdermal sensor providing day-level standard drink or drinking risk level estimates could help 

patients maintain healthy levels of drinking while also offering critical information to health care 

providers. Finally, in the realm of research, devices capable of providing a day-level record of 

standard drinks consumed could refine the precision of outcome assessments within addiction 

treatment trials, thus increasing statistical power for the identification of effective new addiction 

interventions (64).  

Future Directions for New-Generation Sensors 

At the current time, limited research has examined the relationship between new-

generation transdermal sensor output and objective indicators of alcohol consumption, and the 

research that exists has been conducted mainly within the laboratory (9,11,31,37). The task of 

predicting alcohol consumption from transdermal sensor data under real world drinking 

conditions certainly represents a challenge. Importantly, however, as larger transdermal datasets 

accrue, additional powerful modeling tools become available, including models capable of 

accounting for individual and contextual influences on the TAC-BAC relationship. In particular, 

within the context of larger datasets, machine learning models might incorporate large numbers 

of features (e.g., data from temperature and motion sensors embedded within transdermal 

devices; individual-level factors including race, BMI, and gender) and more advanced machine 

learning model types (e.g., deep learning) become available. Deep learning is invaluable for 

achieving high accuracy in many modeling tasks (34), and may be essential for some 

applications of transdermal technology (e.g., informing driving advisability, some just-in-time 



NEW-GENERATION TRANSDERMAL BIOSENSORS  14 
 

interventions). However, many challenges remain for deep learning in this domain; current 

datasets lack the millions of datapoints often needed in deep learning, and further work is needed 

to design domain-specific models that are small and fast enough to run on devices like 

smartphones (as has been done in other domains, 65).   

Regarding the transdermal monitors themselves, although suitable for many research 

functions, additional work is needed before these devices are ready for widespread application. 

To date the majority of new-generation sensor validation work has involved BACtrack Skyn 

(9,11,31,37). Earlier Skyn prototypes showed high rates of device failure, although reliability has 

improved substantially with newer prototypes (9,31). Current Skyn prototypes feature limited 

waterproofing, compatibility only with iOS devices, and limited battery life. In addition, as is 

typical early in the development of any novel technology, prototype sensors are currently 

expensive. Given that the underlying technology and materials supporting transdermal devices 

are not costly in-and-of themselves, prices are likely to decrease with expanding usage of 

transdermal sensors.  

Finally, although machine learning approaches can have advantages for modeling 

complex associations, other frameworks can also excel in such contexts including first-principles 

mathematical models (27,56,57). First principles models have the advantage of requiring less 

data because they rely on expert knowledge, while machine learning might uncover previously-

unknown relationships given sufficient data. Future research might directly compare these 

modeling frameworks for TAC-BAC translation.  

Conclusion 

Recent technological advances have led to the development of a new generation of 

transdermal sensor and novel tools for transdermal data processing. Additional research will be 



NEW-GENERATION TRANSDERMAL BIOSENSORS  15 
 

required to explore the validity of these new sensors within real-world contexts in response to 

variable alcohol doses in large and diverse populations of drinkers, as well as to establish the 

feasibility and acceptability of these devices for longer term wear. Nonetheless, early research 

indicates these sensors will greatly expand the range of application for biosensor technology 

within addiction science. 
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Table 1.  
Description of sensor evaluation metrics (Part 1) and potential applications for new-generation sensors according to predicted evaluation metric requirements (Part 2) 
Part 1. Description of Evaluation Metrics 
Evaluation 
Metric 

Definition Level Level Description 

Accuracy Congruency between transdermal 
estimates of alcohol use and “true” 
alcohol use 

High Provides estimate of actual BAC (eBAC within .01% of true BAC) 
Mod Provides estimate of standard drinks consumed (eBAC within .02% of true BAC) 
Low Provides estimate only of abstinence (0% BAC), low risk (0%-.08), and high-risk drinking (>.08%) 

Temporal 
Specificity 

Temporal displacement between 
transdermal estimates of alcohol use 
and “true” alcohol use 

High Provides estimates of alcohol consumption in near real-time (e.g., contemporaneous with drinking) 
Mod Provides retroactive estimation (e.g., after drinking episode concludes) time-locked to the minute 
Low Provides retroactive estimation (e.g., after drinking episode concludes) time-locked to the day 

Contextual 
Dependency 

Existence of (substantial) contextual 
effects on transdermal estimates 

No Accuracy in real-world settings is acceptable and/or similar to accuracy in controlled settings   
Yes No accuracy in real-world. Only accuracy in controlled contexts (e.g., lab, medical setting, etc.) 

Part 2. New-Generation Transdermal Sensor Applications 
Domain Application Description Accuracy TempSp CntxD 
Prevention Health Tracker: Sleek device, similar to Fitbit, providing day-level record of abstinence and/or high-risk drinking 

episodes for longer term wear 
Mod/Low Low No 

Intervention Treatment-Adherence/Relapse Tracker: Comfortable/compact device providing objective, day-level record of 
abstinence and/or high-risk drinking episodes for patients enrolled in MI, HR, or CM programs 

Mod/Low Low No 

JITAI/Relapse Prevention: Device for real-time detection of drinking episodes among those in recovery, 
prompting intervention and thus diminishing relapse severity/duration  

Low High No 

Medical Medical Monitor: Comfortable device for objective tracking of drinking risk level for providers treating those 
with medical diagnoses contraindicating higher level of alcohol consumption (e.g., diabetes, etc.) 

Mod/Low Low No 

BAC Monitor: Non-invasive, real-time BAC monitor for patients presenting to hospitals or medical facilities with 
clinically relevant intoxication 

High High Yes 

Motor 
Vehicle  

Driving Safety Monitor: Device for passive real-time BAC estimation could prompt alarms or contact a ride 
sharing service when BAC approaching higher levels 

High/Mod High No 

Research Longitudinal Research: Comfortable device providing an objective day-level record of changes in abstinence 
and/or high-risk drinking over months/years 

Mod/Low Low No 

Laboratory BAC Monitor: Continuous, passive, real-time BAC monitor for participants in laboratory studies 
involving alcohol 

High High Yes 

Basic Field Research: A discreet device for assessing immediate causes/consequences of alcohol consumption in 
real-world contexts  

Mod/Low High/Mod No 

Intervention Outcome: Comfortable device providing an objective day-level record of drinking following 
participation in trials of novel addiction interventions   

Mod/Low Mod/Low No 

Part 2 displays our predictions regarding the level of accuracy and temporal specificity (low/moderate/high) required for various applications of transdermal technology. Part 2 also 
indicates whether the application would be possible given a pattern of context dependence characterized by accuracy only in controlled settings (yes/no).  
BAC=Blood alcohol concentration; eBAC=Transdermal estimates of BAC; Mod=Moderate; TempSp=Temporal specificity; CntxD=Context dependence; MI=Motivational interviewing; 
HR=Harm Reduction; CM=Contingency management; JITAI=Just-in-time adaptive interventions. 
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Figure 1. Top panel displays two new generation transdermal wrist sensors—

Milo (left) and BACtrack (right). Bottom panel displays old-generation 

(AMS SCRAM; left) and new-generation (BACtrack Skyn prototype; right) 

devices to scale, side by side. Bottom panel adapted from (10). 
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Figure 2. The relationship between a single TAC measurement and BAC as estimated using linear regression (left) and Extra-

Trees machine-learning (right). “Fold”s refer to portions of the dataset held out for testing during four-fold cross validation. In 

the case of a single TAC measurement, the machine learning model predicted ~0% eBAC for TAC values close to 0, and a 

gradually increasing TAC–eBAC relationship for higher values (with noise due to measurement error, individual differences, 

and other causes).  


