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Wrist-worn transdermal alcohol concentration (TAC) sensors have the potential to provide detailed in-
formation about day-level features of alcohol use but have rarely been used in field-based research or in
early adulthood (i.e., 26e40 years) alcohol users. This pilot study assessed the acceptability, user burden,
and validity of using the BACtrack Skyn across 28 days in individuals' natural settings. Adults aged 26e37
(N ¼ 11, Mage ¼ 31.2, 55% female, 73% non-Hispanic white) participated in a study including retrospective
surveys, a 28-day field protocol wearing Skyn and SCRAM sensors and completing ecological momentary
assessments (EMA) of alcohol use and duration (daily morning reports and participant-initiated start/
stop drinking EMAs), and follow-up interviews. Day-level features of alcohol use extracted from self-
reports and/or sensors included drinks consumed, estimated Blood Alcohol Concentration (eBAC),
drinking duration, peak TAC, area under the curve (AUC), rise rate, and fall rate. Repeated-measures
correlations (rrm) tested within-person associations between day-level features of alcohol use from the
Skyn versus self-report or the SCRAM. Participants preferred wearing the Skyn over the SCRAM [t
(10) ¼ �6.79, p < .001, d ¼ 2.74]. Skyn data were available for 5614 (74.2%) out of 7566 h, with 20.7% of
data lost due to syncing/charging issues and 5.1% lost due to device removal. Skyn agreement for
detecting drinking days was 55.5% and 70.3% when compared to self-report and the SCRAM, respectively.
Correlations for drinking intensity between self-report and the Skyn were 0.35 for peak TAC, 0.52 for
AUC, and 0.30 for eBAC, which were smaller than correlations between self-report and SCRAM, at 0.78 for
peak TAC, 0.79 for AUC, and 0.61 for eBAC. Correlations for drinking duration were larger when
comparing self-report to the Skyn (rrm ¼ 0.36) versus comparing self-report to the SCRAM (rrm ¼ 0.31).
The Skyn showed moderate-to-large, significant correlations with the SCRAM for peak TAC (rrm ¼ 0.54),
AUC (rrm ¼ 0.80), and drinking duration (rrm ¼ 0.63). Our findings support the acceptability and validity
of using the Skyn for assessing alcohol use across an extended time frame (i.e., 28 days) in individuals’
natural settings, and for providing useful information about day-level features of alcohol use.

© 2022 Elsevier Inc. All rights reserved.
Introduction

Over half of U.S. adults consumed some alcohol in the past
month (Substance Abuse and Mental Health Services
Administration, 2019). Approximately 88,000 people in the U.S.
die annually from alcohol-related causes, and 31% of all U.S.
driving-related fatalities are due to alcohol-impaired driving
(National Institute on Alcohol Abuse and Alcoholism, 2021). Short-
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term effects of alcohol use, such as injuries, occur during or soon
after drinking (Clapp et al., 2018; Clapp, Madden, Mooney, &
Dahlquist, 2017). Long-term effects, such as risk of disease or
alcohol dependence, result from frequent (e.g., daily) and repeated
alcohol exposure over time (Clapp et al., 2018; Holder, 2006; Rehm
et al., 2009). Alcohol exposure varies across different age ranges,
with emerging adulthood (18e25 years) characterized by increases
in alcohol use (e.g., heavy drinking) and abuse that typically either
become entrenched or resolve after age 25 (White & Jackson,
2004). After age 25, individuals' alcohol use patterns are typically
well-established; therefore, examining alcohol use behaviors after
age 25 (i.e., 26e40 years, “early adulthood”) provides a more
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accurate representation of what we would expect to characterize
an individual's typical alcohol use behavior, and thus their exposure
that would impact disease risk (Substance Abuse and Mental
Health Services Administration, 2019; White & Jackson, 2004).
Despite the significant public health burden associated with the
short- and long-term effects of alcohol use, researchers currently
have a limited understanding of individuals' daily alcohol use ex-
posures across extended timeframes. Due to the complex, sporadic,
and cyclical nature of alcohol use (Greenfield & Kerr, 2003), char-
acterizing daily alcohol use exposure across weeks or months is
necessary and will help inform understanding of the short- and
long-term effects of alcohol use and risk for alcohol dependence.

To date, the majority of research characterizing daily alcohol use
has relied on individuals self-reporting number of drinks
consumed. Self-report is a straightforward, acceptable, valid, and
reliable method (Piasecki, 2019; Simons, Wills, Emery, & Marks,
2015; Thornton et al., 2022). However, it is limited by the diffi-
culty of accurately estimating drink volume and ethanol content
(Bond, Greenfield, Patterson, & Kerr, 2014) and by the neuro-
cognitive effects of alcohol (Hultgren, Scaglione, Buben, & Turrisi,
2020). Self-report may over- or under-estimate alcohol use
(Alessi, Barnett,& Petry, 2019; Merrill, Fan,Wray,&Miranda, 2020),
is subject to social desirability biases and stigma associated with
alcohol use (Davis, Thake, & Vilhena, 2010), and is limited by
participant burden and the inability to capture information about
alcohol exposure after consumption stops (Piasecki, 2019). Daily
self-reports cannot capture many meaningful characteristics of
daily alcohol use, such as the biological alcohol concentration,
duration, and pattern of exposure, and an individual's proximal risk
(Hultgren et al., 2020; Piasecki, 2019). These limitations of self-
report have increased interest in developing feasible, acceptable,
and reliable methods for capturing sensor-based biological mea-
sures of daily alcohol use exposure in individuals' natural settings
(Wang, Fridberg, Leeman, Cook, & Porges, 2019).

Several methods already exist for capturing biological measures
of alcohol use exposure, including sensors that measure blood and
breath alcohol concentration (BAC and BrAC, respectively) and
transdermal alcohol concentration (TAC). Sensors measuring BAC
or BrAC only provide information about recent alcohol consump-
tion due to the rapidmetabolism of alcohol, thereby requiringmore
frequent repeated measures that may be too burdensome or inva-
sive for feasibly capturing alcohol use in natural settings (Campbell,
Kim,&Wang, 2018; Fairbairn& Kang, 2019; Leffingwell et al., 2013;
van Egmond, Wright, Livingston, & Kuntsche, 2020). In contrast,
TAC sensors provide a mostly passive and non-invasive approach
for continuously monitoring alcohol use. TAC sensors are worn on
the ankle or wrist and measure the 1% of alcohol that is eliminated
through the skin via insensible perspiration or sweat, such that
there is a temporal delay (30 mine5 h) between alcohol con-
sumption and detection via TAC sensors (Barnett, 2015; Leffingwell
et al., 2013; Piasecki, 2019; Sakai, Mikulich-Gilbertson, Long, &
Crowley, 2006; Swift, 2003). TAC is not quantitatively equivalent to
BAC or BrAC and there are not currently reliable methods for
translating TAC to BAC due to the variety of factors that can impact
individual differences in TAC (e.g., sex, age, skin temperature, mo-
tion) (Fairbairn & Bosch, 2021; Luczak et al., 2018; Luczak &
Ramchandani, 2019; Swift, 2000, 2003; Wang et al., 2019). How-
ever, TAC still provides meaningful information about an in-
dividual's relative, rather than absolute, alcohol exposure and offers
comprehensive information that can be used to richly characterize
daily biological alcohol exposure (Piasecki, 2019;Wang et al., 2019).

One of the most widely used TAC sensors with the strongest
evidence of validity and reliability is the Secure Continuous Remote
Alcohol Monitor (SCRAM), which is worn on the ankle and samples
TAC every 30 min (Barnett, Meade, & Glynn, 2014; Karns-Wright
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et al., 2017; Marques & McKnight, 2009). The SCRAM demon-
strates moderate-to-large positive correlations with self-reported
alcohol use and BrAC (Alessi et al., 2019; Karns-Wright et al.,
2017; Leffingwell et al., 2013; Russell, Turrisi, & Smyth, 2022;
Sakai et al., 2006), and it has established rules for cleaning data and
detecting alcohol use (Roache et al., 2019). The SCRAM has been
used to capture alcohol use in natural settings across a single day
(Clapp et al., 2017) and for up to 16 weeks (Dougherty et al., 2015).
Yet the SCRAM is bulky, about the size of a card deck and weighing
164.4 g/5.8 oz., which can cause participant discomfort and inter-
fere with engaging in activities like running or contact sports
(Alessi, Barnett, & Petry, 2017; Ash et al., 2022; Barnett et al., 2017;
Barnett, Tidey, Murphy, Swift, & Colby, 2011; Sakai et al., 2006).
Participants' most common complaint about wearing the SCRAM is
embarrassment due to its similarity to house arrest monitors, with
some individuals refusing to participate due to social stigma (Alessi
et al., 2017; Ash et al., 2022; Barnett et al., 2011). The SCRAM's
quasi-continuous sampling and large sampling interval limit its
ability to capture the dynamics of alcohol exposure (Piasecki, 2019;
Wang et al., 2019), a challenge that is amplified by SCRAM TAC
values lagging 1e4 h behind BrAC (Fairbairn & Kang, 2019;
Leffingwell et al., 2013; Marques & McKnight, 2009; Sakai et al.,
2006; van Egmond et al., 2020). Recent advances have led to the
development of wrist-worn alcohol biosensors that address many
limitations of the SCRAM.

One promising wrist-worn sensor is the BACtrack Skyn. The
Skyn is a small, lightweight, and unobtrusive device, which may
increase participant acceptability for daily use (Ash et al., 2022;
Campbell et al., 2018; Fairbairn & Kang, 2019; van Egmond et al.,
2020; Wang et al., 2019). The Skyn provides more frequent mea-
sures than the SCRAM, sampling TAC every 20 s (Roache et al., 2019;
Rosenberg et al., 2021). A few studies have tested the Skyn under
controlled laboratory conditions. One found that Skyn TAC corre-
lated strongly with BrAC, and the Skyn had a significantly shorter
lag in detecting peak TAC versus peak BrAC when compared to the
SCRAM's detection of peak TAC, with a mean difference of 66 min
(Fairbairn & Kang, 2019). However, 18e28% of Skyn prototypes
failed (depending on the metric), whereas only 2% of SCRAMs failed
(Fairbairn & Kang, 2019). In another study, researchers employing
machine-learning algorithms successfully estimated BAC using
Skyn data; however, 16e24% of Skyn devices failed (Fairbairn, Kang,
& Bosch, 2020). A third study found good agreement between Skyn
and SCRAM TAC curves, although Skyn data were considerably
“noisier” than SCRAM data, likely due to the Skyn's higher sampling
rate (Wang et al., 2021). These studies provide preliminary evi-
dence for the validity of Skyn prototype TAC data under controlled
laboratory conditions; however, it is also necessary to test the Skyn
in natural settings for extended periods of time as it is often
infeasible and unethical to dose participants in laboratory settings
to the level they dose themselves in natural settings, and the
characteristics of alcohol use may be more varied and/or severe in
natural environments.

To our knowledge, only four studies have tested the Skyn in
natural settings. These studies included samples of five to 47
moderate-to-heavy drinking adults (age range: 18e38 years) with
monitoring periods ranging from a single drinking episode to 14
days (Ash et al., 2022; Rosenberg et al., 2021; Wang et al., 2021).
One study using the Skyn T10 model (a post-prototype model)
showed Skyn sensitivity ranged from 40 to 69%, 67e89%, and
82e100% for detecting any drinking, moderate drinking, or heavy
drinking, respectively, and specificity ranged from 70 to 100%, with
differences depending on the cohort, sample-specific cut-offs used
to detect drinking, and the age of the device (Ash et al., 2022). In the
same sample, the SCRAM sensitivity ranged from 41 to 53%,
46e72%, and 50e91% for detecting any drinking, moderate



1 The screening score of greater than 8 (i.e., scores of 9 or greater) was used by
mistake. The guidelines for the AUDIT indicate that participants should be screened
out based on scores of 8 or greater. Including participants with AUDIT scores of 8
may have resulted in the sample including some heavy/problem drinkers in addi-
tion to the more moderate/social drinkers.
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drinking, or heavy drinking, respectively; however, the SCRAM
consistently showed 100% specificity across cohorts (Ash et al.,
2022). Other studies using post-prototype Skyn devices [model
number(s) not specified] found it detected 12 out of 15 self-
reported drinking events across 5 days (Rosenberg et al., 2021),
and it failed to detect episodes with only one or two drinks across 5
or 14 days (Rosenberg et al., 2021; Wang et al., 2021). The Skyn
showed a mean delay of 35.6 min in detecting self-reported
drinking onset (Wang et al., 2021). There were strong correlations
between Skyn-detected drinking start time and area under the
curve and self-reported drinking start time and number of drinks,
respectively (Rosenberg et al., 2021). It was difficult to distinguish
TAC elevations due to biological versus environmental alcohol
exposure (Wang et al., 2021), and drinking detection rules were not
robust due to TAC thresholds differing widely between cohorts and
device lots (Ash et al., 2022). Participants reported high accept-
ability for using the Skyn (Ash et al., 2022; Rosenberg et al., 2021),
greater tolerability and lower burden for using the Skyn versus the
SCRAM (Ash et al., 2022), and similar usability and acceptability
ratings for the Skyn and self-report (Wang et al., 2021). However,
participants noted it was difficult to upload Skyn data, which
resulted in data loss (Wang et al., 2021). Participants wanted the
device to be waterproof, have a longer battery life, and to include
notifications about battery level and upload progress (Wang et al.,
2021). The Skyn app now includes notifications about data up-
load progress. These studies provide support for the acceptability
and feasibility of using the Skyn across 5 or 14 days in natural
settings. However, additional research is needed to test accept-
ability, feasibility, and validity of using the Skyn across extended
timeframes (e.g., 14 or more days) (Ash et al., 2022; Fairbairn &
Bosch, 2021; van Egmond et al., 2020; Wang et al., 2019). Collect-
ing Skyn data across extended timeframes is needed for providing
sufficient coverage of alcohol use to observe risk processes, given
that consumption patterns are complex, sporadic, and cycle weekly
(e.g., social weekends versus weekdays) and seasonally (e.g., holi-
days) (Finlay, Ram, Maggs, & Caldwell, 2012; Greenfield & Kerr,
2003). Collecting Skyn data across extended timeframes during
early adulthood is valuable for understanding alcohol exposure and
its risks, given that early adulthood is the time when individuals’
alcohol use patterns become established and more characteristic of
typical alcohol use exposure (Substance Abuse and Mental Health
Services Administration, 2019; White & Jackson, 2004). Research
is also needed to examine the validity of daily measures of alcohol
use exposure captured across extended timeframes via the Skyn,
compared to self-report and other device-based measures of
alcohol use (e.g., SCRAM) (Ash et al., 2022; Fairbairn & Bosch, 2021;
van Egmond et al., 2020; Wang et al., 2019).

The primary purpose of this pilot study was to assess the
acceptability, user burden, and validity of using the Skyn across 28
days in early adults' natural settings. This population was selected
because individuals' alcohol use patterns are typically well-
established after age 25 and are more characteristic of average
alcohol exposure (Substance Abuse and Mental Health Services
Administration, 2019; White & Jackson, 2004). We compared the
acceptability of using the Skyn and SCRAM and evaluated perceived
burden associated with using the Skyn.We assessed the proportion
of alcohol use data available from the Skyn andwe assessed validity
based on the 1) correspondence in detecting drinking days be-
tween the Skyn versus self-report or the SCRAM, and 2) corre-
spondence between the Skyn's ability to detect day-level features
of alcohol use in the field compared to more established measures,
including self-report and the SCRAM. Day-level alcohol use features
were compared due to the small number of days with more than
one SCRAM-defined drinking episode, differential time lags be-
tween Skyn and SCRAM drinking detection, the lag between
3

drinking initiation and TAC detection (Fairbairn & Kang, 2019;
Piasecki, 2019; Wang et al., 2019), and due to self-reports being
measured daily. This study extends the existing literature by
examining the use of the Skyn in naturalistic settings across the
longest time frame to date (28 days), and replicating real-world
conditions of Skyn use, such that participants were permitted to
indirectly expose the Skyn to environmental alcohol (e.g., via use of
hand sanitizer) and to use the Skyn app on their personal smart-
phones to sync device data, emulating the typical approach used for
other app-connected device-based measures of health behaviors
(e.g., physical activity devices). Additionally, day-level features of
alcohol use (e.g., peak TAC, drinking duration) detected via the Skyn
(worn all 28 days) are compared to self-report (collected all 28
days) and to the SCRAM (worn for the first 14 days).
Materials and methods

Participants, recruitment, and screening

Participants were recruited throughout the state of Pennsylva-
nia via email (e.g., University listservs), direct mail postcards, and
word of mouth, and completed a screening survey prior to enroll-
ment. Recruitment materials targeted individuals who consumed
alcohol on at least two days per week. To be eligible, participants
needed to 1) speak and read English fluently, 2) be 26e40 years of
age, 3) live in Pennsylvania, 4) own and use an Apple phone, and 5)
have consumed alcohol on at least two days per week over the prior
month. Participants were excluded if they 1) were pregnant or
planning on becoming pregnant, 2) had ever been diagnosed with
cancer, and 3) scored greater than 81 on the Alcohol Use Disorder
Identification Test (AUDIT) (Babor, Higgins-Biddle, Saunders, &
Monteiro, 2001), as we were interested in examining device per-
formance among light andmoderate drinkers. Participants (n¼ 20)
completed the screening survey, and five did not qualify due to
their AUDIT scores (n ¼ 3), age (n ¼ 1), or lack of an Apple device
(n ¼ 1). Of the 15 qualified participants, three did not respond to
researchers after completing the screening survey. The remaining
12 qualified participants consented to participate; however, one
withdrew after three days due to experiencing physical pain while
wearing the SCRAM (the device rubbed against their ankle skin)
despite several attempts to reduce/eliminate pain based on trou-
bleshooting advice from research personnel, and their data were
removed from the study, resulting in a final study sample of 11
participants.
Procedure

The study lasted 30 days and included several phases: 1) base-
line visit, 2) device-training visit, 3) 28-day field protocol with
midterm survey collection, and 4) follow-up survey and interview.
Data were collected between January 7, 2021, and May 28, 2021,
and, due to the COVID-19 pandemic, all visits were conducted
remotely. Participants were compensated up to $120. All proced-
ures were approved by the university institutional review board
(Study #00026481).

Participants completed their baseline visit remotely via Zoom, at
which time they provided consent and completed a 30-min survey
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assessing demographics, drinking motives (Cooper, 1994), and
substance use and physical activity behaviors.

Following the baseline visit, devices were mailed to participants
with a paper wear log. Upon receipt of devices, participants
completed a 1-h training visit via Zoom regarding how to wear the
devices, use the apps (i.e., Skyn and Personal Analytics Companion
or PACO app) (Evans, 2016, 2021), and complete the wear log. PACO
is an open-source platform developed for researchers to collect
survey-based behavioral health data through a smartphone appli-
cation (downloaded to the participant's device) or through the
PACO website (Evans, 2016, 2021).

Immediately following the training visit, participants began the
28-day field protocol, during which they wore the SCRAM, the
Skyn, and a physical activity monitor (activPAL), and completed
daily EMA surveys and event-initiated drinking surveys on their
smartphones. On the morning of day 15, participants removed the
SCRAM and completed themidterm survey. Throughout the 28-day
field protocol, research personnel monitored the Skyn data to
ensure participants were syncing their data. Participants were
contacted after two consecutive days of missing Skyn data (n ¼ 3)
to increase compliance and data quality. Research personnel pro-
vided troubleshooting help throughout the study period for par-
ticipants as needed. On the morning of day 29, participants
removed the Skyn and completed the follow-up survey. Within 1
week after the 28-day field protocol, participants completed a 10-
min follow-up interview. Data from the activPAL were not used in
this manuscript.

Skyn protocol. Participants wore the Skyn T10 model (rented
from the manufacturer by the research team) on their non-
dominant wrist continuously for the 28-day field protocol during
waking and sleeping hours, only removing it to shower, bathe,
swim, or charge the device, which required 60e90 min. Partici-
pants downloaded the app to their smartphones. Skyn data were
synced via Bluetooth to participants' smartphones and uploaded to
the company's cloud-based server. Alcohol use data were available
to participants via the app, but the data were not pushed to par-
ticipants and there was no record of whether participants sought
behavioral feedback. Data synced automatically if the app was
open, the device was connected, and there was internet access. If
the app was closed or the device was not connected, participants
had to manually connect and sync the data. Participants were
reminded daily to sync their devices and upload data, because
failure to sync resulted in data loss, as the Skyn can only hold 72 h
of data. The Skyn holds its charge for up to 72 h, though not all
batteries lasted that long, and data loss occurred if the battery was
depleted. After 28 days, participants mailed the Skyn back to the lab
using a pre-paid, pre-addressed envelope provided by the
researchers.

SCRAM protocol. Participants wore the SCRAM on their ankle
continuously for the first 14 days of the field protocol during
waking and sleeping hours, only removing it to bathe, swim, or
participate in vigorous activity or contact sports. The SCRAM was
only worn for 14 days to reduce participant burden given lower
acceptability of the SCRAM compared to the Skyn (Ash et al., 2022).
After 14 days, participants mailed the SCRAM back to the lab and
data were uploaded to the SCRAMNet server, which houses TAC
data, records TAC “positives”, and tracks device wear compliance
through infrared voltage and skin temperature readings.

Wear log protocol. Participants completed a daily wear log in
which they reported whether they removed the Skyn or SCRAM
devices. Participants reported the day of theweek, the date, and the
time a given device was removed and replaced, with the option to
report multiple device removals throughout the day.

EMA protocol. Participants used the PACO app to complete the
EMA protocol, which consisted of two survey types. The first was
4

the scheduled EMA survey, which prompted participants to com-
plete a morning survey at 9:00 AM. Participants could respond
immediately upon prompting or could self-initiate surveys. The
morning survey required 1e2 min to complete and asked about the
previous day's drinking and substance use behaviors and drinking-
related influences (e.g., seeing others drink, having access to
alcohol). At the end of the morning survey, participants were
reminded to sync their Skyn data and to charge the Skyn device.
The second EMA type was the event-initiated drinking surveys
based on Piasecki's (2019) episode bracketing approach, in which
participants initiated EMA surveys when they started consuming
their first drink of the day and when they stopped consuming their
last drink of the day.

On the morning of day 29, participants completed the follow-up
survey. Within one week of completing the 28-day field protocol,
participants completed a 10-min, one-on-one semi-structured
interview via Zoom, and provided information about their experi-
ences using the Skyn device and app.

Measures

Device acceptability. During midterm and follow-up, partici-
pants reported acceptability of using the SCRAM (midterm only)
and Skyn devices by rating their agreement with 10 items from the
Measuring User Acceptance of Wearable Symbiotic Devices survey
(Spagnolli, Guardigli, Orso, Varotto, & Gamberini, 2014). We used
the perceived comfort (five items, e.g. “I think the SCRAM/Skynwas
comfortable”), facilitating conditions (two items, e.g., “The SCRAM/
Skyn limits the way in which I like to perform my daily activities”),
effort expectancy (two items, e.g., “It seems easy to learn how to use
the SCRAM/Skyn”), and perceived privacy (one item, i.e., “I think
the SCRAM/Skyn threatens my privacy”) subscales. Agreement
ratings were on a 5-point Likert scale ranging from Strongly
Disagree (1) to Strongly Agree (5). We calculated average accept-
ability for each subscale and the entire survey, with higher scores
indicating greater acceptability (a ¼ 0.84e0.89). Participant inter-
view responses about likes/dislikes related to using the Skyn and its
app provided additional context about Skyn acceptability.

User burden. During the follow-up survey, participants reported
burden associated with using the Skyn by rating either the fre-
quency or degree of burden based on 18 items from the User
Burden Scale (Suh, Shahriaree, Hekler,& Kientz, 2016), which refers
to burden associated with using both the Skyn device and app (i.e.,
“BACtrack tools”). We used the difficulty of use (four items, e.g.,
“The BACtrack tools were hard to learn”), physical burden (three
items, e.g., “The BACtrack tools made me feel physical pain”), time
and social burden (four items, e.g., “I spent toomuch time using the
BACtrack tools”), mental and emotional burden (four items, e.g.,
“The BACtrack tools required me to remember too much informa-
tion”), and privacy (three items, e.g., “The BACtrack tools' policies
about privacy were not trustworthy”) subscales. Ratings were on a
5-point Likert scale, with frequency responses ranging from Never
(1) to All of the Time (5) and degree of burden responses ranging
from Not at All (1) to Extremely (5). We calculated average levels of
burden for each subscale and for the entire survey, with higher
scores indicating greater user burden. Average scores were inter-
preted using Suh et al.‘s guidelines (2016) (a ¼ 0.82), such that
subscales received grades of A (top 15% of scores; 86e100%), B (next
30% of scores; 56e85%), C (next 40% of scores; 16e55%), D (next 10%
of scores; 6e15%), or F (bottom 5% of scores; 0e5%) based on the
following average scores, with ranges varying for each subscale (for
example, an average score of 2 is a “C” on the time and social
subscale and a “D” on the difficulty of use subscale): Average scores
of 0 received an “A”, average scores ranging from 0 to 0.5 received a
“B”, average scores ranging from 0.33 to 2.33 received a “C”, average
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scores ranging from 1 to 3.33 received a “D”, and average scores
ranging from 1.67 to 4 received an “F” (Suh et al., 2016). Participant
interview responses about difficulties using the Skyn and Skyn app
provided additional context about user burden.

Data Quality and Validity. Data quality was assessed based on
the proportion of alcohol use data available via self-report (i.e.,
number of daily surveys) and the Skyn and SCRAM devices (i.e.,
relative to the number of days/hours useable data were collected).
Validity was assessed based on: 1) correspondence in detecting
drinking days between the Skyn versus self-report or the SCRAM,
and 2) correspondence between the Skyn's ability to detect day-level
features of alcohol use in the field compared to more established
measures, including self-report and the SCRAM, though neither is a
gold standard for field studies of drinking (Piasecki, 2019).

Self-reported day-level alcohol use features. During the
morning EMA survey, participants reported the total number of
standard drinks of alcohol they consumed “yesterday” (drinking
intensity [c]), with responses ranging from 0 to 15 (or more, coded
at 15). A standard serving was defined as 12 ounces (oz.) of 5% beer,
8e9 oz. of 7% beer, 4e5 oz. of wine, a 1.5 oz. shot of liquor (straight
or in a mixed drink), or 12 oz. of hard seltzer; the survey was
accompanied by a picture (National Institute on Alcohol Abuse and
Alcoholism, 2022). Daily self-reports were selected because they
show stronger correlations with SCRAM features than other
methods, such as timeline follow-back (Russell et al., 2022). Par-
ticipants also reported the times when they started and stopped
drinking “yesterday”. During the event-initiated surveys, partici-
pants reported when they started or stopped drinking, and survey
time stamps were used to identify drinking start/stop times. If
participants reported having consumed one or more drinks on the
morning survey it was classified as a drinking day. If participants
reported not drinking “yesterday” (e.g., Day 2) on the morning
survey but they did initiate a start and/or stop drinking survey on
the same day referenced by themorning survey (e.g., Day 2), then it
was considered a drinking day (n ¼ 6). Drinking duration was
calculated based on the time elapsed between when participants
reported starting and stopping drinking. There were two separate
drinking duration variables, one based on the morning EMA (tmorn)
and the second based on the event-initiated surveys (tevent), both of
which were used in subsequent analyses. Estimated Blood Alcohol
Concentration (eBAC) values were calculated using the following
formula: eBAC ¼ [(c/2) � (GC/w)] � (b60 � t) (Matthews & Miller,
1979). Here eBAC is expressed in g/dL, c is the number of stan-
dard drinks reported, GC is a gender constant (9.0 for females and
7.5 for males), w is weight in pounds, b60 is the metabolism rate of
alcohol per hour (0.017 g/dL), and t is the number of hours spent
drinking (tmorn or tevent). There were two separate eBAC variables,
one based on the morning EMA drinking time (eBACmorn) and the
second based on the event-initiated surveys (eBACevent). Negative
values for eBACmorn and eBACevent were replaced with 0. Drinking
days, drinking intensity, drinking duration, and eBAC from the
morning EMA surveys were temporally aligned with event-
initiated drinking surveys and Skyn and SCRAM sensor data.

Segmenting Skyn and SCRAM TAC data into “social days”. Given
that drinking often extends past midnight, we assumed that partici-
pants' EMA morning reports of “yesterday's” drinking included the
hoursbetweenmidnightand themorning report. Therefore, Skynand
SCRAM TAC data were segmented into “social days” (Russell et al.,
2022), using 9:00 AM as the boundary because it was the time of
themorning EMA. If participants had at least one drinking episode on
a social day, it was classified as a drinking day. If a drinking episode
spannedmultiple days, day-level features were calculated separately
for each day, and if a day contained multiple episodes, day-level fea-
tures were calculated using all data for that social day.
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Skyn day-level alcohol use features. The Skyn uses fuel-cell
technology to assess TAC every 20 s in mg/L air and captures skin
temperature (�C) to help identify device wear compliance and
motion (g's). Skyn TAC data do not have any zero values or any
‘true-zero’ in the sense that there is no value output by the Skyn
that can, at face value, be interpreted as representing a complete
lack of alcohol (i.e., 0 alcohol) being excreted, Skyn data also include
negative values, baseline values vary between individuals, and
there are no established guidelines for identifying drinking epi-
sodes (Fairbairn & Kang, 2019; Rosenberg et al., 2021; Wang et al.,
2019). Therefore, we identified episodes by iteratively examining
the data using rules that were informed by consultations with the
Skyn manufacturer (Personal Communication e Neely, 2021) and
by Roache et al.’s (2019) rules for cleaning SCRAM data. Although
Roache et al.’s (2019) rules could not be directly applied to the Skyn
data due to differences between the SCRAM and Skyn TAC scales,
the rules were used to inform the parameters investigated in the
Skyn data to identify drinking episodes, including steep point-to-
point rises or falls in TAC slopes (Roache et al., 2019; Rule 3),
removing extremely short TAC events (Roache et al., 2019; Rule 5),
and removing short TAC events with steep point-to-point rises in
TAC slopes (Roache et al., 2019; Rule 6). Table 1 defines the steps
used for processing Skyn data and identifying episodes. Briefly, TAC
readings taken when the temperature was <29 �C were considered
non-wear and were recoded to missing based on the manufac-
turer's recommendation. Fifteen-minute rolling averages of
minute-level Skyn data were used to smooth the TAC data
(Rosenberg et al., 2021;Wang et al., 2019) and any observationwith
a 15-min rolling TAC average � 15 mg/L air was identified as a po-
tential alcohol use episode based on the manufacturer's recom-
mendation (n ¼ 414). Potential Skyn alcohol use episodes were
removed if they had any of the following characteristics: 1)
�15 min (similar to Roache et al.’s [2019]; Rules 5 and 6); 2)
�60min and peak TAC�400 mg/L air; 3) Rise rate�2500 (similar to
Roache et al.’s [2019] Rule 3); 4)�60 min and rise rate�1000; or 5)
Rise rate ¼ 0. All Skyn TAC values that were not part of an episode
were replaced with 0 mg/L air as those TAC values were considered
indicative of non-drinking alcohol exposure (i.e., environmental
contamination). This introduced new 0 mg/L air values into the Skyn
data because, as noted above, Skyn TAC data do not include any zero
values or any ‘true-zero’ values. A total of 260 episodes were
removed, resulting in 154 episodes. Of these 154 episodes, 53
occurred during days 1e14 from participants who also had SCRAM
data. Five characteristics were extracted from Skyn drinking epi-
sodes to establish day-level features of alcohol use based on the
social day (9:00 AM to 9:00 AM) (Russell et al., 2022), including
drinking intensity (peak TAC and area under the curve [AUC]),
drinking duration (hours with TAC >0 mg/L air), rise rate (average
rate of all ascending point-to-point TAC values), and fall rate
(average rate of all descending point-to-point TAC values).

SCRAM day-level alcohol use features. The SCRAM uses self-
generated air flow to capture transdermal ethanol evaporation
every 30 min in g/1470 L of air, and TAC is determined using fuel-
cell technology (Fairbairn & Kang, 2019; van Egmond et al., 2020).
For the SCRAM, if a participant self-reported removing the sensor,
all TAC values during the time frame it was removed were
replaced with missing values. SCRAM devices failed for four par-
ticipants, resulting in seven participants with SCRAM data. Based
on Roache et al.’s (2019) validated guidelines, those seven par-
ticipants recorded 43 SCRAM drinking episodes across days 1e14.
Five characteristics were extracted from SCRAM drinking episodes
to establish day-level features of alcohol use: drinking intensity
(peak TAC and AUC), drinking duration (hours with TAC >0 g/
1470 L air), rise rate, and fall rate.



Table 1
Steps for Processing Skyn Data to Identify Drinking Episodes

Step Number Step name Description

1 Recoding negative TAC values to zero All Skyn TAC values that were negative (less than zero) were replaced with zero. This step was
recommended by BACtrack Skyn personnel due to the fact that there are no zero values in Skyn dataa

and negative TAC values are physiologically implausible.
2 Recoding TAC values with temperature <29 �C

to missingb
All Skyn TAC values that occurred when the temperature reading was <29 �C were considered
missing data andwere recoded asmissing. This step was recommended by BACtrack Skyn personnel
because the Skyn monitor measures body temperature (�Celsius) as a means to detect non-wear
time. Personnel suggested that any temperature reading <29 �C was indicative of participant non-
wear.

3 Calculating 15-minute rolling averages for TACc 15-minute rolling averages for TAC (mg/L air) were calculated that included the 7 minutes of data
prior to and after a givenminute of data. This stepwas recommended by BACtrack Skyn personnel to
smooth out TAC data.

4 Identifying minutes with rolling TAC �15 mg/L
air

Any row of data with a 15-minute rolling average for TAC �15 mg/L air was identified as potentially
representing the device being exposed to alcohol, either via the participant’s skin, which would be
indicative of a participant consuming alcohol, or via environmental contamination (i.e., hand
sanitizer, cologne, alcohol-based products). BACtrack Skyn personnel identified 15 mg/L air as a cut-
off TAC value (from the rolling average) that could potentially represent true alcohol exposure. This
step was needed due to the lack of zero values in Skyn data, such that a person could have a zero for
blood alcohol concentration but still show positive TAC readings from the Skyn device.

5 Bracket individual alcohol exposure episodesd Individual alcohol exposure episodes were bracketed separately from one another, such that
consecutive strings of data with rolling TAC averages �15 mg/L air were bracketed into an ‘alcohol
exposure episode’ to indicate that the device was exposed to non-negligible amounts of alcohol.

6 Define characteristics of alcohol exposure
episodes

Characteristics of the alcohol exposure episodes were defined, including the peak TAC, AUC, episode
duration, average ascending TAC slope, and average descending TAC slope. This step was used as a
starting point for identifying episode characteristics that were indicative of actual alcohol use (i.e.,
actual drinking episodes) versus characteristics that were indicative of non-drinking alcohol
exposure (i.e., environmental contamination).

7 Calculating characteristics for Skyn alcohol
exposure episodes

Descriptive statistics for each of the characteristics defined in Step 6 were calculated for each Skyn
alcohol exposure episode. This step was used to identify minimum, maximum, and mean values of
episode characteristics (e.g., peak TAC, duration) to indicate values that were likely representative of
actual alcohol use versus non-drinking alcohol exposure, such as environmental contamination.

8 Removing Skyn alcohol exposure episodes �15
minutes in duratione

Skyn alcohol exposure episodes �15 minutes in duration were removed. Episodes �15 minutes
were considered to be indicative of non-drinking alcohol exposure based on descriptive
characteristics calculated during Step 7 and based on the physiological improbability that an
individual would metabolize all of the alcohol they consumed rapidly enough to make it
undetectable by the Skyn (i.e., rolling average <15 mg/L air) in �15 minutes. This step is similar to
Roache et al.’s Rules 5 and 6 (2019).

9 Removing Skyn alcohol exposure episodes �60
minutes in duration and with a peak TAC �400
mg/L airf

Skyn alcohol exposure episodes �60 minutes in duration and with a peak TAC � 400 mg/L air were
removed. Episodes with these characteristics were considered to be indicative of non-drinking
alcohol exposure based on Step 7, as the combination of a high peak TAC with a short episode
duration reflected the Skyn being exposed to non-drinking-related alcohol, like hand sanitizer,
resulting in a higher peak TAC and shorter duration than would be likely if an individual consumed
enough alcohol to reach such a high peak TAC. If an individual consumed thatmuch alcohol, it would
likely take longer than 60 minutes to metabolize all of the alcohol rapidly enough to make it
undetectable by the Skyn in �60 minutes.

10 Removing Skyn alcohol exposure episodes with
a rise rate �2500g

Skyn alcohol exposure episodes with a rise rate �2500 were removed. Episodes with this
characteristic were considered to be indicative of non-drinking alcohol exposure based on Step 7, as
such large rise rates were considered implausible representations of true drinking, as the TAC
increased too quickly over too short of time period for true drinking, and likely only occurred due to
environmental contamination, such as exposure to high concentrations of alcohol (i.e., hand
sanitizer) at the Skyn sensor. This step is similar to Roache et al.’s Rule 3 for processing SCRAM data
(2019).

11 Removing Skyn alcohol exposure episodes �60
minutes in duration and with a rise rate�1000h

Skyn alcohol exposure episodes �60 minutes in duration and with a rise rate �1000 were removed.
Episodes with these characteristics were considered to be indicative of non-drinking alcohol
exposure based on Step 7, as such short episodes combined with such high rise rates were
considered implausible representations of true drinking, as the TAC increased too quickly over too
short a time period and the episode was too short in duration for an individual to metabolize the
amount of alcohol that could account for such a rapid increase in TAC over that short time period of
�60 minutes.

12 Removing Skyn alcohol exposure episodes with
a rise rate ¼ 0i,j

Skyn alcohol exposure episodes with a rise rate ¼ 0 were removed. Episodes with this characteristic
were considered to be indicative of non-drinking alcohol exposure based on Step 7, as actual alcohol
consumption should be reflected by increases (ascending limb/slope) and decreases (descending
limb/slope) in TAC paralleling changes in blood alcohol concentration after alcohol is consumed,
metabolized, and eliminated from the body, and a rise rate¼ 0 reflects no increase in TAC across the
episode.

13 Replacing non-zero TAC values that were not
part of an alcohol exposure episode with 0 mg/L
air

All non-zero TAC values that were not part of an alcohol exposure episode, including negligible non-
zero TAC values, as well as TAC values that were originally part of an alcohol exposure episode, but
that were later removed based on Steps 8e12, were replacedwith 0 mg/L air, as the original non-zero
values were deemed to not represent drinking-related alcohol exposure. They were not replaced
with missing values because the data were not missing per se, given that the Skyn had TACmeasures
that were taken when the device was being worn (the temperature was �29 �C). These values were
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Table 1 (continued )

Step Number Step name Description

replaced with 0 so that we could calculate day-level characteristics of alcohol use from the Skyn TAC
data with non-drinking related TAC values removed from the day-level data.

a Raw Skyn data did not include any values equal to zero.
b Descriptive statistics of TAC readings that occurred when the temperature was <29 �C revealed that all readings were negligible, non-zero values, increasing confidence

that the cut-off of 29 �C was appropriate and likely did not inadvertently result in removing drinking episodes from the data.
c Smoothing of TAC data through the use of rolling or moving averages is an approach that has been used by previous researchers (Rosenberg et al., 2021;Wang et al., 2019).
d This first round of bracketing alcohol exposure episodes resulted in identifying 414 episodes across the 11 participants’ 308 study days, with a range of 1e63 episodes per

participant.
e 108 episodes violated the rule of being �15 minutes in duration.
f 70 episodes violated the rule of being �60 minutes in duration and having a peak TAC � 400 mg/L air.
g 118 episodes violated the rule of having a rise rate �2500.
h 165 episodes violated the rule of being �60 minutes in duration and having a rise rate �1000.
i 21 episodes violated the rule of having a rise rate ¼ 0.
j After removing a total of 260 episodes based on rules outlined in steps 10e14, there were 154 episodes across 10 participants (one participant had zero episodes).

Table 2
Participant demographics and descriptive statistics for drinking behaviors

Demographics N¼11

Age in years (Mean ± SD) 31.2 ± 3.0
Sex (n (%))
Male 5 (45.5%)
Female 6 (54.5%)
Race, non-hispanic ethnicity [n (%)]a

White 8 (72.7%)
Asian 1 (9.1%)
Black 2 (18.2%)
Work status (n (%))
Full-time 7 (63.6%)
Undergraduate/Graduate student e working 1 (9.1%)
Undergraduate/Graduate student e not working 3 (27.3%)
Drinking descriptive statistics N¼11
Days drink per week (Mean ± SD) 3.8 ± 1.8
Drinks per week (Mean ± SD) 10.0 ± 7.5
Binge drinkers [n (%)]b 7 (63.6%)
Days per month e All participants (Mean ± SD) 2.7 ± 3.7
Days per month e Binge drinkers (Mean ± SD)c 4.3 ± 3.8
Drinker type [n (%)]d

Light 2 (18.2%)
Moderate 6 (54.5%)
Heavy 3 (27.3%)

Notes: SD ¼ standard deviation.
a All participants were non-Hispanic.
b Binge drinking was defined based on consuming 4þ or 5þ drinks per day for

women or men, respectively.
c Mean days per week with binge drinking among people who engaged in binge

drinking (n¼7).
d Drinkers were categorized using CDC definitions. Light ¼ �3 drinks/week,

moderate¼ >3 to 14 and >3 to 7 drinks/week for men andwomen, respectively, and
heavy ¼ �15 and �8 drinks/week for men and women, respectively (Centers for
Disease Control, 2019).
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Statistical analyses

Paired samples t tests were used to compare Skyn versus SCRAM
acceptability at midterm, and to compare Skyn acceptability at
midterm versus follow-up. Cohen's d was used to estimate effect
sizes. Detection rates of drinking days were compared between the
Skyn versus self-report or the SCRAM, and the SCRAM versus self-
report. Rates of true positives/negatives, false positives/negatives,
sensitivity, specificity, and positive and negative predictive value
were calculated by comparing Skyn versus self-report and SCRAM
versus self-report (see Table 4 for formulas). When comparing Skyn
versus SCRAM, we examined agreement and disagreement be-
tween devices in detecting days as drinking versus non-drinking
days and the likelihood of days being detected as drinking days
by both devices or non-drinking days by both devices.

Repeated-measures correlations with bootstrapping were
calculated using the rmcorr package in R (Bakdash & Marusich,
2017) to examine within-person associations between day-level
features of alcohol use based on Skyn and SCRAM data and self-
reported EMA surveys. Repeated-measures correlations account
for the non-independence of observations through an atypical
application of ANCOVA with a fixed effect of ID, thus removing
between-person variance from the predictor and estimating the
within-person association between the predictor and outcome (i.e.,
day-level features of alcohol use measured via the Skyn versus self-
report or the SCRAM) (Allison, 2019; Bakdash & Marusich, 2017).
This was an appropriate method given the focus on testing within-
person comparisons of day-level features of alcohol use. Day-level
features examined included drinking intensity, drinking duration,
eBAC, peak TAC, AUC, rise rate, and fall rate. We used R version 4.0.1
for all analyses. Statistical significance was set at p < .05.

Results

Table 2 includes participant demographics and descriptive sta-
tistics for drinking behaviors across the 28 days. The sample
(N ¼ 11) was 55% female and 73% non-Hispanic white with a mean
age of 31.2 ± 3.3 years. The majority of participants (64%) worked
full time and 36% were graduate students. Participants self-
reported drinking alcohol an average of 15.4 ± 7.4 days
(range¼ 5e27 days), consuming amean of 39.9 ± 31.2 drinks across
the 28 days (range: 6 to 107 drinks), and a mean of 2.8 ± 2.0 drinks
per drinking day (range ¼ 1 to 10 drinks/drinking day). Using CDC
definitions, participants were categorized as light (�3 drinks/
week), moderate (>3 to 14 and > 3 to 7 drinks/week for men and
women, respectively), or heavy (�15 and � 8 drinks/week for men
and women, respectively) drinkers, such that 18.2% (n ¼ 2) were
light drinkers, 54.5% (n ¼ 6) were moderate drinkers, and 27.3%
(n ¼ 3) were heavy drinkers (Centers for Disease Control and
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Prevention, 2019). Based on self-report, 63.6% (n ¼ 7) of partici-
pants engaged in binge drinking (4þ/5þ drinks/day for women/
men) on at least one day across the 28-day study. Across all par-
ticipants, the mean number of binge drinking days was 2.7 ± 3.7
days (range¼ 0e12 days), with those who binge-drank engaging in
binge drinking on a mean of 4.3 ± 3.8 days (range ¼ 1e12 days).
Acceptability and user burden

One participant dropped the study after three days due to
discomfort wearing the SCRAM, which implies low device accept-
ability. However, they dropped prior to completing the midterm
surveys for SCRAM and Skyn acceptability, and the subsequent
comparisons are based on the 11 participants who provided
acceptability data. At midterm (study day 15), Skyn acceptability
was 4.4 ± 0.6 (SD) and SCRAM acceptability was 2.5 ± 0.8 out of 5.
Skyn acceptability ratings were significantly higher than SCRAM
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ratings overall [t (10) ¼ �6.79, p < .001, d ¼ �2.74] and for the
perceived comfort [t (10) ¼ �6.66, p < .001, d ¼ �2.77], facilitating
conditions [t (10) ¼ �8.32, p < .001, d ¼ �3.00], and effort expec-
tancy [t (10) ¼ �4.34, p < .01, d ¼ �1.33) subscales. There were no
differences in Skyn versus SCRAM acceptability ratings for the
perceived privacy subscale [t (10) ¼ �0.99, p ¼ .37, d ¼ �0.41]. As
shown in Supplemental Table 1, several themes emerged related to
Skyn acceptability in the follow-up interviews, including partici-
pants liking the feel and look of the Skyn versus the discomfort and
social stigma of the SCRAM and the low effort for using the Skyn
app.

At follow-up, Skyn acceptability was 4.5 ± 0.7, which was the
same as at midterm [t (10) ¼ �0.78, p ¼ .46, d ¼ �0.16]. Mean user
burden for the Skyn was 0.2 ± 0.2, and it received A's (top 15% of
scores, ranging from 86 to 100%) for the time and social (0.2 ± 0.2),
mental and emotional (0.2 ± 0.3), and privacy (0.1 ± 0.2) subscales,
received a B (next 30% of scores, ranging from 56 to 85%) for the
difficulty of use (0.3 ± 0.4) subscale, and received a C (next 40% of
scores, ranging from 16 to 55%) for the physical burden (0.4 ± 0.6)
subscale (Suh et al., 2016). The ‘B's/C's’ for difficulty of use and
physical burden were mirrored by interview responses, with
themes related to issues the participants experienced due to skin
discomfort, the fragility and limited durability of the Skyn, and
difficulties related to battery life (reported by all 11 participants),
charging, and syncing the device (see Supplemental Table 1 for
details).

Data Quality and Validity

Alcohol use data quality and availability. One of 10 Skyn de-
vices (10%) failed to hold a charge and was replaced halfway
through the field protocol. Participants reported wearing the Skyn
for 89% of the 28 days. Overall, data were available for a total of
5617 h (74.2%) out of 7566 h. Across the 11 participants, data
availability ranged from 180.6 to 589.2 h/person (27.1%e85.4% of
the 28-day field protocol). However, 1563 h (20.7%) of data were
lost due to participant failure to sync the data, charge the device, or
incomplete syncing (range: 61.0e440.8 h/person; 8.8%e66.2%).
Another 386.2 h (5.1%) of data were lost due to device removal
(based on Skyn temperature readings <29 �C) (range: 7.4e55.3 h/
person; 1.1%e8.0%). In total, 1949 h (25.8%) of data were missing
across all 11 participants across the 28-day field protocol (range:
100.8e485.4 h/person; 14.6%e72.9%). The proportion of missing
data did not vary by day of the week (i.e., weekdays versus week-
ends, social weekdays versus social weekends) or any sociodemo-
graphic variables (p > .05).

Of the seven SCRAM devices used for the study, three (43%)
failed to record any TAC data despite recording temperature and
infrared voltage and despite functioning correctly and recording
TAC data in previous studies (Russell et al., 2022; West, Bomysoad,
Russell,& Conroy, 2022). The three devices that failedwereworn by
four of the 11 participants (36%), resulting in a sample of seven
participants with SCRAM data. Among those seven participants,
SCRAM data were available for a total of 2363 h (97.8%) out of
2416 h across days 0e14. SCRAM data availability ranged from
320.5 to 347.0 h/person (93.0%e100.0% of days 0e14). Four par-
ticipants self-reported removing the devices briefly (~60e120 min)
to participate in exercise, such that a total of 53.5 h (2.2%) of data
were lost due to device removal (range: 0.0e24.0 h/person; 0.0%e
7.0%). Missingness did not vary by day of the week (i.e., weekdays
versus weekends, social weekdays versus social weekends) or any
sociodemographic variables (p > .05).

Participants completed 97% of the assigned EMA morning re-
ports. Participants initiated start and stop drinking reports on 88%
and 74% of morning-reported drinking days, respectively.
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Detecting drinking days. Table 3 provides descriptive statistics
for the type of drinking day and day-level features of alcohol use by
measurement type. Across the 28-day field protocol, we identified
107 drinking days and 185 non-drinking days with the Skyn and
participants self-reporting 169 drinking days and 142 non-drinking
days. Across the first 14 days, and among participants whose
SCRAM devices functioned, we identified 38 drinking days and 57
non-drinking days with the Skyn, 40 drinking days and 65 non-
drinking days with the SCRAM, and participants self-reported 56
drinking days and 47 non-drinking days.

Table 4 provides detection rates of drinking and non-drinking
days, and rates for true positives/negatives, false positives/nega-
tives, sensitivity, specificity, and positive/negative predictive values
for Skyn and SCRAM versus self-report. When compared to self-
report, the Skyn and SCRAM had similar false positive (13.6% and
10.6%, respectively) and false negative rates (44.5% and 37.5%,
respectively). Approximately half of the false negatives for the Skyn
and SCRAM (44% and 57%, respectively) occurred on days when
participants self-reported consuming one alcoholic beverage. For
the false negatives occurring on days when participants consumed
more than one alcoholic beverage, participants self-reported
3.5 ± 1.8 drinks (range: 2e8) for days with Skyn false negatives
and self-reported 2.1 ± 0.3 drinks (range 2e3) for days with SCRAM
false negatives. When compared to self-report, the Skyn and
SCRAM had similar levels of sensitivity (i.e., the proportion of self-
reported drinking days that the device detected) and positive
predictive value (i.e., the likelihood that a device-detected drinking
day was also a self-reported drinking day). Specifically, Skyn and
SCRAM sensitivity were 55.5% and 62.5%, respectively, and positive
predictive values were 85.0% and 87.5%, respectively.

When comparing the Skyn to the SCRAM there was some
disagreement in detecting drinking days. Specifically, 20.7% of
drinking days detected by the Skyn were not detected by the
SCRAM, and 29.7% of drinking days detected by SCRAM were not
detected by the Skyn. However, the Skyn and SCRAM also showed
agreement in that 70.3% of drinking days detected by the Skynwere
detected by the SCRAM, and 79.3% of non-drinking days detected
by the Skynwere detected by the SCRAM. The likelihood of a Skyn-
detected drinking day also being a SCRAM-detected drinking day
was 68.4%. The likelihood of a Skyn-detected non-drinking day also
being a SCRAM-detected non-drinking day was 80.7%.

Correlations between day-level features of alcohol use. Table 5
provides repeated-measures correlations of day-level features of
alcohol use (e.g., drinking intensity, duration, estimated BAC) for all
three measurement types. Skyn and SCRAM day-level alcohol use
features showed significant within-person correlations with all
self-reported alcohol use features. However, the correlations be-
tween Skyn-based measures of drinking intensity (e.g., peak TAC,
AUC) and self-reported measures of drinking intensity (i.e., drinks
consumed) were smaller than the correlations between SCRAM-
based measures of drinking intensity (e.g., peak TAC, AUC) and
self-reported measures of drinking intensity. Specifically, the cor-
relations between Skyn peak TAC and AUC with self-reported
number of drinks were 0.35 and 0.52, respectively, whereas the
correlations between SCRAM peak TAC and AUC with self-reported
number of drinks were 0.78 and 0.79, respectively. Similarly, the
correlations between Skyn peak TAC and AUCwithmorning report-
based eBAC were 0.30 and 0.48, respectively, whereas the corre-
lations between SCRAM peak TAC and AUC with morning report-
based eBAC were 0.61 and 0.59, respectively. In contrast, the Skyn
correlations with self-reported drinking duration were marginally
larger than the SCRAM correlations with self-reported drinking
duration. Specifically, the correlations between Skyn drinking
duration with morning EMA and event-contingent EMA drinking
duration were 0.36 and 0.37, respectively, whereas the correlations



Table 3
Day-level alcohol use characteristics by measurement sourcea

Study days 1e14 Skyn SCRAM Self-report

Type of day

Drinking day [n (%)] 38 (36.2%) 40 (24.2%) 56 (53.3%)
Non-drinking day [n (%)] 57 (54.3%) 65 (39.4%) 47 (44.8%)
Missing [n (%)] 10 (9.5%) 60 (36.4%) 2 (2.4%)
Drinking intensity
Number of drinks (c) (Mean ± SD)b � � 1.45 ± 1.05
Peak TAC (Mean ± SD)c,d 53.66 ± 39.58 0.018 ± 0.012 �
Area under the curve (Mean ± SD)e,f 82.64 ± 76.02 0.08 ± 0.06 �
Drinking Duration (hours/day)
Morning EMA (tmorn) (Mean ± SD)g � � 1.59 ± 1.37
Event contingent EMA (tevent) (Mean ± SD)h � � 2.14 ± 1.78
Time with TAC > 0 (Mean ± SD)i,j 1.40 ± 1.20 2.75 ± 1.43 �
Estimated BAC (g/dL)k

Morning EMA (eBACmorn) (Mean ± SD)g 0.007 ± 0.005
Event Contingent EMA (eBACevent) (Mean ± SD)h 0.005 ± 0.006
Average Ascending TAC Slope (Mean ± SD)k,l 129.29 ± 118.70 0.005 ± 0.002 �
Average Descending TAC Slope (Mean ± SD)m,n �72.14 ± 44.50 �0.006 ± 0.003 �
Study days 1e28 Skyn SCRAM Self-report
Type of day
Drinking day [n (%)] 107 (32.5%) 40 (12.2%) 169 (51.4%)
Non-drinking day [n (%)] 185 (56.2%) 65 (19.8%) 142 (43.2%)
Missing [n (%)] 37 (11.2%) 224 (68.1%) 18 (5.5%)
Drinking intensity
Number of drinks (Mean ± SD)b � � 1.41 ± 1.02
Peak tAC (Mean ± SD)c,d 42.85 ± 25.07 0.018 ± 0.012 �
Area under the curve (Mean ± SD)e,f 64.56 ± 53.47 0.08 ± 0.06 �
Drinking duration (hours/day)
Morning EMA (Mean ± SD)g � � 1.88 ± 1.27
Event contingent EMA (Mean ± SD)h � � 1.95 ± 1.51
Time with TAC > 0 (Mean ± SD)i,j 1.08 ± 0.83 2.75 ± 1.43 �
Estimated BAC (g/dL)
Morning EMA (eBACmorn) (Mean ± SD)g � � 0.014 ± 0.007
Event contingent EMA (eBACevent) (Mean ± SD)h � � 0.012 ± 0.008

Notes: SCRAM ¼ Secure Continuous Remote Alcohol Monitor; TAC ¼ Transdermal alcohol concentration; EMA ¼ Ecological momentary assessment; SD ¼ standard deviation
a Values are reported based on all days and are not limited to drinking days.
b 3.6% of days 1e14 were missing data. 7.3% of days 1e28 were missing data.
c Peak TAC for the Skyn is in mg/L air. 7.9% of days 1e14 were missing data. 11.2% of days 1e28 were missing data.
d Peak TAC for the SCRAM is in g/dL. 36.4% of days 1e14weremissing data across all 11 participants. 0% of days 1e14weremissing data for the 7 participants with functional

SCRAM devices.
e 7.9% of days 1e14 were missing data. 11.2% of days 1e28 were missing data.
f 36.4% of days 1e14 were missing data across all 11 participants. 0% of days 1e14 were missing data for the 7 participants with functional SCRAM devices.
g 3.6% of days 1e14 were missing data. 7.3% of days 1e28 were missing data.
h 14.5% of days 1e14 were missing data. 18.8% of days 1e28 were missing data.
i 7.9% of days 1e14 were missing data. 11.2% of days 1e28 were missing data.
j 36.4% of days 1e14 were missing data across all 11 participants. 0% of days 1e14 were missing data for the 7 participants with functional SCRAM devices.
k 7.9% of days 1e14 were missing data.
l 38.2% of days 1e14 were missing data across all 11 participants. 1.8% of days 1e14 were missing data for the 7 participants with functional SCRAM devices.

m 7.9% of days 1e14 were missing data.
n 36.7% of days 1e14 were missing data across all 11 participants. 0% of days 1e14 were missing data for the 7 participants with functional SCRAM devices.
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between SCRAM drinking duration with morning EMA and event-
contingent EMA drinking duration were 0.31 and 0.29, respec-
tively The Skyn demonstrated large, significant correlations with
SCRAM peak TAC (rrm ¼ 0.54), AUC (rrm ¼ 0.80), and drinking
duration (rrm ¼ 0.63), which were larger than the Skyn correlations
with self-reported drinking intensity, duration, and eBAC. The Skyn
showed null or small correlations with SCRAM rise rate (rrm ¼ 0.19)
and fall rate (rrm ¼ 0.29).

Sensitivity analyses. Due to the fact that there are currently no
rules for identifying drinking episodes using Skyn data (van
Egmond et al., 2020; Wang et al., 2021), we investigated the pos-
sibility that the cut-off value used for identifying drinking episodes
(TAC �15 mg/L air) impacted the findings. To examine this possi-
bility, and given prior research finding that Skyn TAC values stayed
below 15 mg/L air in a participant who consumed one standard
drink (Wang et al., 2021), sensitivity analyses explored using a
lower cut-off of TAC �10 mg/L air for identifying drinking episodes.
This lower cut-off increased the Skyn's false positive rate for
detecting self-reported drinking from 12.9% with the �15 mg/L air
9

cut-off to 24.2% with the �10 mg/L air cut-off and decreased the
false negative rate from 42.4% with the�15 mg/L air cut-off to 35.4%
with the �10 mg/L air cut-off. Lowering the cut-off did not improve
sensitivity to detecting lighter drinking. Specifically, the �15 mg/L
air cut-off resulted in 67 false negative days, whereas the �10 mg/L
air cut-off resulted in 56 false negative days. Despite the decrease in
the number of false negative days with the lower cut-off, the same
proportion of false negatives (46%) occurred on days with self-
reports of consuming one drink. Correlations between Skyn and
self-report values decreased with the lower cut-off, as did corre-
lations between Skyn and SCRAM values, suggesting that this lower
cut-off value did not improve the ability to detect drinking versus
not drinking, or day-level characteristics of drinking, with the Skyn.

Discussion

This pilot study examined the acceptability and validity of using
the Skyn across 28 days in individuals’ natural settings and
compared day-level features of alcohol use captured via the Skyn to



Table 4
Skyn detection of drinking and non-drinking days compared to SCRAM and self-
report

Detection rates Skyn versus
self-report

SCRAM versus
self-reporta

True positive [n (%)]b 91 (32.3%) 35 (34.0%)
False positive [n (%)]c 16 (5.7%) 5 (4.9%)
True negative [n (%)]d 102 (36.2%) 42 (40.8%)
False negative [n (%)]e 73 (25.9%) 21 (20.4%)
False positive rate (%)c 13.6% 10.6%
False negative rate (%)e 44.5% 37.5%
Sensitivity (%)f 55.5% 62.5%
Specificity (%)g 86.4% 89.4%
Positive predictive value (%)h 85.0% 87.5%
Negative predictive value (%)i 58.3% 66.7%

a For comparisons with SCRAM data, participants with missing SCRAM data due
to device malfunction were excluded (n ¼ 4), such that, for self-report, there were
56 drinking days, 47 non-drinking days, and 2 days with missing data.

b True positives (TP) occur when the test measure (e.g., Skyn) detects a drinking
day that corresponds with a drinking day based on the reference measure (i.e., self-
report), excluding missing data.

c False positives (FP) occur when the test measure detects a drinking day that
corresponds with a non-drinking day based on the reference measure, excluding
missing data. The false positive rate is the proportion of days incorrectly identified
as drinking days by the test measure versus the reference measure and was
calculated as: FP/(FP þ TN).

d True negatives (TN) occur when the test measure detects a non-drinking day
that corresponds with a non-drinking day based on the reference measure,
excluding missing data.

e False negatives (FN) occur when the test measures detect a non-drinking day
that corresponds with a drinking-day based on the reference measure, excluding
missing data. The false negative rate is the proportion of days incorrectly identified
as non-drinking days by the test measure versus the reference measure and was
calculated as: FN/(FN þ TP).

f Sensitivity is the proportion of test-measured drinking days detected by the
reference measure and was calculated as: TP / (TP þ FN).

g Specificity is the proportion of test-measured non-drinking days detected by the
reference measure and was calculated as: TN / (TN þ FP).

h Positive predictive value is the likelihood that a day classified as a drinking day
by the test measure was a drinking day as defined by the referencemeasure andwas
calculated as: TP/(TP þ FP).

i Negative predictive value is the likelihood that a day classified as a non-drinking
day by the test measurewas a non-drinking day as defined by the referencemeasure
and was calculated as: TN/(TN þ FN).
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self-report (across 28 days) and the SCRAM (across 14 days). Par-
ticipants reported high acceptability for using the Skyn and
preferred it to the SCRAM. It was feasible to collect Skyn TAC data;
however, charging and battery life issues contributed significantly
to missing data. The Skyn demonstrated reasonable correspon-
dence with self-reported and SCRAM-defined drinking days and
provided useful information for characterizing day-level features of
alcohol use that corresponded with self-report and the SCRAM.

Our study contributes to the literature by comparing the
acceptability of using the Skyn to the SCRAM across 14 days in
natural settings and under conditions emulating the typical use of
app-connected device-based measures of health behaviors (e.g.,
physical activity monitors), though results should be interpreted
with caution given the high failure rate of the SCRAMs. Consistent
with previous research (Ash et al., 2022), participants rated the
Skyn as more acceptable than the SCRAM. Skyn acceptability rat-
ings remained high across 28 days, supporting the ability to use the
Skyn across extended timeframes. Participants’ high acceptability
ratings and assessments of the Skyn as comfortable, stylish, and
unobtrusive aligned with previous research (Ash et al., 2022;
Rosenberg et al., 2021; Wang et al., 2019, 2021), and addressed two
SCRAM limitations e discomfort and social stigma (Alessi et al.,
2017; Ash et al., 2022; Barnett et al., 2011, 2017; Sakai et al.,
2006), which resulted in one participant dropping out of the
study after three days. Also similar to previous research (Wang
et al., 2021), participants found the Skyn app easy to use, even for
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technical novices. Perceived privacy concerns were similar for the
Skyn and SCRAM, which was somewhat unexpected given that
SCRAM data are secured within the device, whereas Skyn data are
available in the app and uploaded to a cloud-based server, infor-
mation that was communicated to participants during the
informed consent process. However, this was the first study
examining privacy concerns related to the Skyn, which should be
assessed in other sociodemographic groups, as it is possible that
privacy concerns could vary by age or experience with cloud-based
storage (Auxier et al., 2019; Kunst, 2017).

Despite high acceptability, the Skyn received a “C” rating (scores
ranging from 16 to 55%) for physical burden and a “B” rating (scores
ranging from 56 to 85%) for difficulty of use. Several participants
experienced skin irritation from the Skyn's mesh strap, which was
unanticipated as other researchers did not report adverse skin re-
actions, though that may reflect the shorter time frame of previous
studies (Ash et al., 2022; Rosenberg et al., 2021; Wang et al., 2021).
Researchers should be aware of the potential for adverse skin re-
actions. Our participants experienced similar difficulties to those in
previous studies related to trouble uploading data, charging the
device, and maintaining the battery life, all of which resulted in
data loss (Wang et al., 2021). Participants wanted the Skyn to have a
longer battery life and for the device and/or app to provide notifi-
cations about remaining battery life (Wang et al., 2019, 2021). In
this sample, the battery lasted less than 48 h, required daily
charging, and one device needing to be replaced after only 28 days
in use, suggesting the devices may have a short lifespan, findings
that are consistent with Ash et al.‘s study in which the Skyn T10
model's batteries typically failed prior to 72 h of field use and
sensitivity decreased three months after device shipment (Ash
et al., 2022). These difficulties were exacerbated by participant
confusion regarding charging the device, as the Skyn T10 model
needs to be powered off for the ‘currently charging’ light to turn on.
This resulted in data loss, as several participants forgot to power the
device back on after it was charged. Given consistent concerns
regarding battery life and charging (Ash et al., 2022; Wang et al.,
2019, 2021), the manufacturer updated the Skyn device, with the
new T15 model touting a ~10-day battery life and the updated app
including a battery life indicator, both of which should help address
the aforementioned concerns and reduce participant burden and
the risk of data loss related to the Skyn's battery life. Importantly, it
is difficult to make direct comparisons between the outcomes of
our study, which used the T10 model, with the outcomes of older
studies using Skyn prototypes or future studies which may use the
T15 (or newer) models.

Participants expressed concerns about the Skyn's lack of
waterproofing or sufficient water resistance, which could limit the
ability to use it across extended periods in field-based studies due
to the risk of device damage (Ash et al., 2022; Fairbairn & Bosch,
2021; Wang et al., 2021), although the new Skyn T15 model has
greater water resistance than the T10 model used in this study.
Exposure to environmental alcohol could also impact the Skyn
membrane's permeability and decrease sensor sensitivity, sug-
gesting that, similar to the SCRAM, the Skynmembrane likely needs
replaced periodically due to natural wear and tear (Ash et al., 2022;
Wang et al., 2019). Participants questioned the Skyn's durability,
which is notable given previously mentioned expectations that
newer wrist-worn TAC sensors could expand opportunities for
assessing alcohol use across longer timeframes (Ash et al., 2022;
Fairbairn & Bosch, 2021; Wang et al., 2021). These battery life and
durability issues give rise to practical concerns related to the
administrative burden and costs associated with using the Skyn,
particularly given that it is still a relatively expensive device
(Fairbairn & Bosch, 2021). Overall, participants expressed high
levels of acceptability for using the Skyn across 28 days in natural
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settings and they preferred it to the SCRAM. Recent improvements
to the Skyn T15 model, including increased battery life and water
resistance, should reduce user burden. Additional improvements
addressing device durability could further enhance the ability to
use the Skyn across extended time frames in natural settings.

Our study tested the Skyn in natural settings and it differed from
Ash et al.‘s study (2022) by permitting participants to indirectly
expose the Skyn to environmental alcohol (e.g., via use of hand
sanitizer) and by having participants use the Skyn app on their
personal smartphones to sync data. It was feasible to collect Skyn
data, with 74% of data available across the 28-day field protocol.
This was comparable to a previous study using the WrisTAS sensor
(Bond et al., 2014), but was lower than previous studies using the
Skyn in which data were available for 90e96% of study days (Ash
et al., 2022; Rosenberg et al., 2021). However, our study covered a
longer time frame than previous Skyn studies [28 versus 5 days for
Rosenberg et al. (2021) and 14 days for Ash et al. (2022), respec-
tively], and we accounted for missing data from device removal,
failed syncing, and battery failure. Notably, despite low overall
missing data in Ash et al.‘s study, battery failure was the primary
cause of missing data in their study (2022). Although previous
studies mentioned low temperature readings suggesting that par-
ticipants may have removed their devices (Ash et al., 2022; Wang
et al., 2021), ours is the first study providing detailed information
about the proportion of Skyn data that were missing due to device
removal (based on skin temperature readings) versus syncing or
lost data issues. Our finding that a small proportion of data (5.1%)
were lost due to device removal was an improvement compared to
a study in which participants removed the WrisTAS for 10% of days
(Simons et al., 2015). A larger proportion (20.7%) of data were lost
Table 5
Day-level repeated-measures correlations between Skyn, SCRAM, and Self-Reported drin

Comparisons
Drinking intensity
(drinks consumed vs. peak TAC or
peak TAC vs. peak TAC)a

Drinking
vs. AUC o

rrm (df) [95% CI] rrm (df)

Skyn versus self-report 0.35 (259) [0.23, 0.47]*** 0.52 (259
SCRAM versus self-report 0.78 (67) [0.64, 0.87]*** 0.79 (67)
Skyn versus SCRAM 0.51 (68) [0.19, 0.75]*** 0.80 (68)

Drinking duration
(Event-contingent EMA vs.
Time with TAC > 0) d,e

Estimate
(Morning

Comparisons rrm (df) [95% CI] rrm (df)
Skyn versus self-report 0.37 (230) [0.23, 0.52]*** 0.30 (259
SCRAM versus self-report 0.29 (89) [0.12, 0.50]** 0.61 (67)

Estimated BAC (Morning
EMA vs. AUC) f

Estimate
(Event-co
EMA vs.

Comparisons rrm (df) [95% CI] rrm (df)
Skyn versus self-report 0.48 (259) [0.35, 0.60]*** 0.42 (222
SCRAM versus self-report 0.59 (67) [0.42, 0.72]*** 0.48 (61)

Rise rate g Fall rate
Comparisons rrm (df) [95% CI] rrm (df)
Skyn versus SCRAM 0.18 (65) [-0.10, 0.50] 0.25 (68)

Notes: SCRAM ¼ Secure Continuous Remote Alcohol Monitor; TAC ¼ Transdermal Alc
Assessment; df ¼ Degrees of freedom; CI ¼ Confidence Interval
*** p < .001; **p < .01; *p < .05
a For Skyn and SCRAM versus self-report, this is the number of self-reported drinks v

measured by both devices.
b For Skyn and SCRAM versus self-report, this is the number of self-reported drinks ver

both devices.
c For Skyn and SCRAM versus self-report, this is the amount of time spent drinking ba

time with TAC > 0 mg/L air or TAC > 0 g/dL, respectively.
d For Skyn and SCRAM versus self-report, this is the amount of time spent drinking base

dL (SCRAM).
e There are no values reported for Skyn versus SCRAM because the comparison for drink

Time with TAC > 0).
f Estimated BAC was not compared for Skyn versus SCRAM because there is not a val
g There are no values comparing Skyn versus self-report or SCRAM versus self-report
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due to failure to sync the data, charge the device, or incomplete
syncing, which may be avoidable with the newer Skyn T15 model
due to its longer battery life and the app's new battery life and
connection status indicators. Including a battery life and charging
indicator on the device itself would be useful for researchers and
participants interested in using the Skyn across extended time
frames in natural settings (Ash et al., 2022; Wang et al., 2021).

Despite missing data concerns, only 10% of Skyn devices (n ¼ 1)
failed, with the battery life lasting less than 48 h upon first use and
shortening to less than 8 h with continued use. This was lower than
a previous study in which 18e38% of Skyn prototypes failed
(Fairbairn & Kang, 2019) and was lower than the WrisTAS, which
failed on 18% of study days (Simons et al., 2015). In contrast, our
SCRAM devices had an unusually high 43% failure rate. The SCRAM
devices failed to record TAC, despite skin temperature and infrared
voltage data indicating that the devices were properly attached.
This was abnormally high, with previous pooled analysis finding
only 5% of study days were impacted by SCRAM devices malfunc-
tioning (Barnett et al., 2014). It is unclear why failure rates were so
high, as these devices functioned well in detecting TAC in previous
studies (Russell et al., 2022; West et al., 2021). It is possible that the
SCRAM devices failed due to the number of days in service, as
greater days in service predicts lower likelihood of detecting
alcohol with the SCRAM (Marques & McKnight, 2009); however,
the devices had been used for an average of 109 ± 27 days (range:
81e165), and there was no relationship between prior days of
service and device failure (p ¼ .33), suggesting that days of service
does not account for high device failure rates. Despite these high
failure rates, the SCRAM still holds some advantages over the Skyn.
The SCRAM is sufficiently water resistant to be worn while
king variables

intensity (drinks consumed
r AUC vs. AUC)b

Drinking duration (morning EMA vs.
time with TAC > 0)c

[95% CI] rrm (df) [95% CI]

) [0.43, 0.62]*** 0.36 (259) [0.25, 0.47]***
[0.66, 0.87]*** 0.31 (95) [0.12, 0.56]**
[0.59, 0.92]*** 0.63 (87) [0.51, 0.78]***

d BAC
EMA vs. Peak TAC) f

Estimated BAC (Event-contingent
EMA vs. Peak TAC) f

[95% CI] rrm (df) [95% CI]
) [0.15, 0.41]*** 0.23 (222) [0.10, 0.39]***

[0.41, 0.77]*** 0.42 (61) [0.16, 0.68]***
d BAC
ntingent
AUC) f

[95% CI]
) [0.16, 0.62]***

[0.10, 0.71]***
g

[95% CI]
[0.02, 0.44]*

ohol Concentration; AUC ¼ Area Under the Curve; EMA ¼ Ecological Momentary

ersus peak TAC. For Skyn versus SCRAM, this is comparisons of day-level peak TAC

sus AUC. For Skyn versus SCRAM, this is comparisons of day-level AUC measured by

sed on the morning EMA report. For Skyn versus SCRAM, this is the total amount of

d on the event-contingent EMA versus timewith TAC > 0 mg/L air (Skyn) or TAC > 0 g/

ing duration is reported in the column labeled “Drinking Duration (Morning EMA vs.

idated approach for estimating BAC from Skyn data.
because the self-report data did not permit calculations of rise and fall rates.
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showering, the battery lasts for months, and it can be locked onto a
participant's ankle, preventing device removal (Barnett et al., 2014;
Karns-Wright et al., 2017; Marques&McKnight, 2009; van Egmond
et al., 2020). Lastly, for both the Skyn and SCRAM there were no
differences in missing data across social weekends (Thurs-
dayeSaturday) versus weekdays, which is meaningful given that
the majority of drinking occurs on social weekends (Finlay et al.,
2012). Overall, it was feasible to collect sufficient TAC data using
the Skyn.

The Skyn showed a similar probability to the SCRAM for
detecting self-reported drinking days (i.e., sensitivity). The Skyn's
sensitivity rate (55.5%) was comparable to Ash et al.‘s study (2022),
in which sensitivity to detecting any drinking ranged from 40 to
60%; however, it was somewhat lower than studies in which
sensitivity rates for wrist-worn TAC sensors ranged from 72.4% to
85.6% (Bond et al., 2014; Rosenberg et al., 2021; Simons et al., 2015).
This may be due to differences between our study and previous
studies regarding themethods used to identify drinking episodes or
the types of participants, as participants in previous studies were
heavier drinkers than our participants (Ash et al., 2022; Rosenberg
et al., 2021). Ash et al.‘s study of treatment-seeking heavy-drinking
adults (2022) found that the Skyn showed 70e100% sensitivity for
detecting heavy drinking and 67e89% sensitivity for detecting
moderate drinking. In contrast, sensitivity for detecting any
drinking in Ash et al.‘s study (2022) was much lower (40e60%),
supporting previous assertions that the Skyn may not be able to
consistently detect low-level drinking (Rosenberg et al., 2021;
Wang et al., 2021). Indeed, the Skyn often failed to detect self-
reported drinking when participants consumed only one alco-
holic beverage, even after testing a lower TAC cut-off. This was
similar to previous studies in which some real-world drinking ep-
isodes of one to two drinks (Rosenberg et al., 2021; Wang et al.,
2021) were detected by the Skyn, whereas some were not. This
limitation could be addressed by refining data cleaning and pro-
cessing rules for the Skyn, similar to how Roache et al. (2019)
increased the SCRAM's sensitivity for detecting low-level drinking
from 39.9% (based on the manufacturer's criteria) to 68.5% (Ash
et al., 2022; van Egmond et al., 2020).

The Skyn showed greater agreement in detecting drinking days
when compared to the SCRAM rather than self-report. This is likely
because the Skyn and SCRAM assess the same phenomenon (i.e.,
TAC) and share the limited ability to detect low-level drinking (Ash
et al., 2022; Roache et al., 2019; Rosenberg et al., 2021; van Egmond
et al., 2020; Wang et al., 2019, 2021), though neither is a gold-
standard measure. However, the Skyn sometimes disagreed with
the SCRAM, such that 20.7% of days detected as drinking days by the
Skyn were detected as non-drinking days by the SCRAM. This
disagreement highlights a disadvantage of wrist-versus ankle-
worn TAC sensors; namely, wrist-worn sensors are more suscep-
tible to environmental contamination (Ash et al., 2022; van
Egmond et al., 2020; Wang et al., 2021), such that researchers
may consider instructing participants to avoid the use of alcohol-
based cleaners or hand sanitizers while wearing the Skyn (Ash
et al., 2022). This limitation could be addressed by developing
rules for identifying and removing environmental contamination
from Skyn TAC data (van Egmond et al., 2020; Wang et al., 2021).

This study is unique in comparing day-level features of alcohol
use detected via the Skyn to both self-report and the SCRAM. The
Skyn showed larger correlations with self-report than the SCRAM
with regard to drinking duration, a finding that could be due to the
Skyn assessing TAC more frequently than the SCRAM, which ulti-
mately results in a smaller lag in TAC detection after drinking onset
for the Skyn versus the SCRAM (Fairbairn & Kang, 2019). The Skyn's
correlation between AUC and self-reported number of drinks
(rrm ¼ 0.52) was lower than previous studies using the Skyn
12
(r¼ 0.72) andWrisTAS (r¼ 0.62), but this may reflect statistical and
methodological differences between our study and previous
studies (Bond et al., 2014; Rosenberg et al., 2021). For instance,
Bond et al. (2014) adjusted self-reported number of drinks based on
ethanol content, resulting in a new variable that aligned better
conceptually with TAC than number of drinks per se (Bond et al.,
2014), potentially increasing the strength of the correlation be-
tween the WrisTAS and self-report.

Similarly, the Skyn's correlations with SCRAM-defined day-level
features of alcohol use were larger than its correlations with self-
report, although results should be interpreted with caution due
to the small sample size with SCRAM data (n ¼ 7). The Skyn and
SCRAM assess the same phenomenon, TAC, whereas self-report
does not account for within-person factors impacting alcohol
metabolism (van Egmond et al., 2020; Wang et al., 2019), may not
accurately reflect ethanol content of drinks (Bond et al., 2014), and
is subject to recall biases (Alessi et al., 2019; Merrill et al., 2020).
Skyn and SCRAM drinking duration represent the duration of bio-
logical alcohol exposure, whereas self-report represents the length
of time individuals are actively drinking and does not account for
the descending limb of alcohol exposure, such that only 25% of self-
reported post-drinking assessments are ‘descending limb mo-
ments’ (Piasecki, 2019; Piasecki et al., 2014; Piasecki, Wood,
Shiffman, Sher, & Heath, 2012). This highlights the value of re-
searchers using alcohol sensors when they are specifically inter-
ested in examining the duration of biological alcohol exposure. The
Skyn showed poor correlations with SCRAM rise and fall rates,
which may reflect environmental contamination resulting in rapid
increases and decreases in Skyn TAC data (Wang et al., 2021).
Indeed, despite our attempts to remove environmental contami-
nation from episodes based on rapid increases in Skyn TAC (rules 10
and 11), we were unable to remove all potential environmental
contamination because it often overlapped with actual drinking
episodes. Regardless of these challenges, Skyn TAC values appear to
be useful in characterizing day-level features of alcohol use.

The following limitations should be considered. Despite the
large volume of data, our small sample size and focus on early
adults aged 26e40 years limit the generalizability of findings.
Recruitment criteria permitted the inclusion of light or moderate
drinkers, as we intended to test Skyn feasibility and validity across
most types of drinkers, rather than limiting the study to the heavy-
drinking populations typically used in previous Skyn studies (Ash
et al., 2022; Wang et al., 2019). This resulted in the study
including light (18%), moderate (55%), and heavy (27%) drinkers
who consumed amean of 2.8 drinks per drinking day, with 63.6% of
participants engaging in binge drinking on at least one day of the
study. We also excluded participants whose AUDIT scores were
greater than 8, which may have resulted in the sample including
both moderate/social drinkers and some heavy/problem drinkers,
limiting generalizability to problem drinkers. However, the study
still provides useful information about the Skyn's feasibility and
validity across early adult participants with a range of drinking
behaviors. Participants wore the SCRAM for 14 of the 28 days to
reduce participant burden (Ash et al., 2022) and were permitted to
remove the SCRAM, with 2.2% of data missing due to device
removal. These features of the data collection, combined with the
high SCRAM failure rates, limit the ability to draw strong conclu-
sions about the comparability of real-world Skyn versus SCRAM
data. Additional research is needed to fully compare real-world
Skyn and SCRAM data and acceptability across extended periods,
which would also enable assessing changes in Skyn versus SCRAM
acceptability over time. It is possible that participants changed their
drinking behaviors in response to using the Skyn and seeing their
alcohol use data in the app; however, participants reported that
seeing data did not impact their drinking, and previous research
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found that wearing the WrisTAS did not impact alcohol consump-
tion or abstinence (Simons et al., 2015). Notably, the newest version
of the Skyn app does not display TAC data; nonetheless, future
studies examining participant reactivity towearing the Skyn device
are warranted, as reactivity could differ across sociodemographic
groups or among clinical versus non-clinical populations (K€onig,
Allmeta, Christlein, Van Emmenis, & Sutton, 2022). Our method
for processing Skyn data may have impacted findings, and previous
studies have employed a variety of approaches for processing Skyn
data (Ash et al., 2022; Fairbairn et al., 2020; Fairbairn & Kang, 2019;
Rosenberg et al., 2021; Wang et al., 2019, 2021), which should be
considered when interpreting our findings.
Conclusions

Our findings support the acceptability and validity for using the
Skyn to assess alcohol use across an extended timeframe (i.e., 28
days) in individuals' natural settings. Participants were willing to
wear the Skyn across extended timeframes, and the Skyn provided
useful information about day-level features of alcohol use that
corresponded fairly well with other commonly used approaches for
collecting alcohol use data in natural settings, including self-report
and the SCRAM. Recent improvements to the Skyn's battery life and
charging should enhance usability across extended time frames in
natural settings. The development of methods for cleaning and
processing Skyn data to detect low-level drinking and remove
environmental contamination would enhance the utility of the
Skyn, as well as the ability to compare findings across research
studies.
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