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A B S T R A C T

Background: Trace amounts of consumed alcohol are detectable within sweat and insensible perspiration. 
However, the relationship between ingested and transdermally emitted alcohol is complex, varying across 
environmental conditions and involving a degree of lag. As such, the feasibility of real-time drinking detection 
across diverse environments has been unclear. In the current research we revisit sensor performance using new 
tools, exploring the accuracy of a new generation of rapid-sampling transdermal biosensor for contemporaneous 
drinking detection across diverse environments via machine learning.
Methods: Regular drinkers (N = 100) attended three laboratory sessions involving the experimental manipulation 
of alcohol dose, rate of consumption, and environmental dosing conditions. Participants further supplied breath 
alcohol concentration (BAC) readings in the field over 14 days. Participants wore compact wrist sensors capable 
of rapid sampling (20 sec intervals). Transdermal sensor data was translated into alcohol use estimates using 
machine learning, integrating only transdermal data collected prior to the point of BAC assessment.
Results: A total of 5.39 million transdermal readings (28,615 hours) and 12,699 BAC readings were collected for 
this research. Models indicated strong transdermal sensor accuracy for real-time drinking detection across both 
laboratory and field contexts (AUROC, 0.966, 95 % CI, 0.956–0.972; Sensitivity, 89.8 %; Specificity, 90.6 %). 
Models aimed at differentiating high-risk (≥0.08 %) drinking levels yielded intermediate (AUROC, 0.738; 95 % 
CI, 0.698–0.777; only drinking episodes) to strong (AUROC, 0.941, 95 % CI, 0.929–0.954; all data) accuracy 
levels.
Conclusions: Results indicate a range of useful future applications for transdermal alcohol sensors including long- 
term health tracking, medical monitoring, and just-in-time relapse prevention.

1. Introduction

The potential public health impact of a wearable alcohol monitor is 
large and growing (Fairbairn and Bosch, 2021). Deaths from alcohol 
have climbed steadily across the past two decades, surging an estimated 
29 % in the years since COVID-19 (Esser et al., 2024; Spencer et al., 
2022). Simultaneously, adolescent and young adult drinkers show 
reduced binge drinking frequency compared to older cohorts (Substance 
Abuse and Mental Health Services Administration, 2022) and, with the 
increasing ubiquity of mocktails and dry-bars (Bowdring et al., 2024; 
World Health Organization, 2023), these populations demonstrate 
heightened awareness of health consequences of alcohol use (Gallup Inc, 
2023). Across age cohorts, engagement with digital health monitoring 

technologies has burgeoned (Pew Research Center, 2024). The health 
impact of alcohol looms large, while unprecedented potential exists for 
intervention through technology-mediated care (Esser et al., 2024; 
Steinhubl et al., 2013).

Monitoring of active alcohol intake forms the backbone of alcohol 
use intervention (Epstein and McCrady, 1998; Miller, 1978; Miller and 
Rollnick, 2012), but the identification of effective monitoring methods 
has represented a formidable challenge (Swift, 2003). Alcohol exerts 
direct pharmacological effects on attentional, memory, and motiva-
tional resources required for self-monitoring (Fairbairn et al., 2021; 
Weissenborn and Duka, 2003; White, 2003), and knowledge of societal 
stigma surrounding alcohol use can bias users’ reports (Davis et al., 
2010). For individuals seeking to abstain or moderate alcohol use, 
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motivation to engage in active alcohol use monitoring naturally fluc-
tuates over time and across divergent contexts (DiClemente and Pro-
chaska, 1998; Marlatt, 1996; Miller and Rollnick, 2012). Wearable 
sensors have been identified as representing a solution to specific chal-
lenges of alcohol self-monitoring (Barnett, 2015; NIAAA, 2015; Swift, 
1993). While traditional monitoring methods require motivated action 
at the time of each alcohol use assessment, wearable sensors permit the 
disjuncture of the decision to engage in active monitoring from the 
drinking context itself, limiting demands on the drinker at times when 
cognitive and motivational resources are likely to be constrained 
(Barnett, 2015). Wearable sensors have the potential to provide passive 
and continuous monitoring of alcohol use, requiring minimal active 
engagement on the part of the drinker (Swift, 1993). These monitors 
might have far-ranging application, including the provision of real-time 
support among individuals in recovery (Barnett, 2015; Nahum-Shani 
et al., 2017), health monitoring by providers treating patients in medi-
cal contexts (Burton and Sheron, 2018), and prevention-focused daily 
health tracking among broad populations of drinkers (Takacs et al., 
2014).

Transdermal sensors currently represent the most widely-researched 
technology for wearable alcohol use assessment (van Egmond et al., 
2020; Yu et al., 2022). Approximately 1 % of consumed alcohol is 
emitted through the skin in the form of sweat and insensible perspiration 
(Nyman and Palmlöv, 1936; Swift and Swette, 1992). Thus, it is possible 
to assess the concentration of alcohol emitted via water vapor from the 
stratum corneum using a device that integrates basic fuel-cell technol-
ogy and rests on the skin’s surface (Swift, 1993).

Transdermal Alcohol Concentration (TAC) reflects the combined 
effects of passive alcohol diffusion within blood via skin capillaries 
(insensible perspiration) as well as active perspiration from sweat gland 
secretions (sensible perspiration), fluids that exhibit differential alcohol 
concentration and lag times to alcohol excretion (Anderson and Hlas-
tala, 2006). As such, output from transdermal alcohol sensors is com-
plex, and based on prior research, it has been unclear whether 
contemporaneous transdermal detection of alcohol consumption might 
be achieved with acceptable accuracy and temporal specificity for 
widespread application (Anderson and Hlastala, 2006; Luczak and 
Ramchandani, 2019; Marques and McKnight, 2009). More specifically, 
due to lag times between ingested and transdermally emitted alcohol, 
the capability of transdermal devices for real-time or near real-time 
detection of alcohol consumption is currently unknown (Anderson and 
Hlastala, 2006; Marques and McKnight, 2009). Further, a variety of 
environmental factors can confound the relationship between ingested 
and transdermally emitted alcohol, including perspiration rate, vari-
ability in skin-sensor distance, and ambient alcohol, and the accuracy of 
new-generation transdermal sensors outside invariant/sterile lab set-
tings is currently unclear (Fairbairn and Bosch, 2021; Luczak and 
Ramchandani, 2019). Therefore, perspiration-based alcohol sensors 
have been siloed for niche application as retroactive abstinence moni-
tors within the criminal justice system (Alcohol Monitoring Services, 
2018), where real-time data is non-essential and moderate accuracy can 
support applications that maximize specificity at a cost to sensitivity 
(van Egmond et al., 2020). In contrast, broader populations of drinkers 
as yet lack a wearable alcohol biosensor.

Yet the limitations of transdermal assessment more broadly have 
been challenging to separate from the limitations associated with the 
technology and analytic tools available to previous generations of re-
searchers (Fairbairn and Bosch, 2021; Yu et al., 2022). Prior research has 
predominantly examined output from transdermal bracelets featuring a 
bulky ankle-worn design and a relatively sparse sampling interval 
(30-minutes; Yu et al., 2022). This work has been further characterized 
by small datasets (average N = 17, see Yu et al., 2022), subjective re-
ports of drinking as “ground truth,” and laboratory-based testing con-
ditions (see Yu et al., 2022 for a review). Within this work, considerable 
delays between ingested and transdermally diffused alcohol have been 
evident (e.g., Marques and McKnight, 2009), interference posed by 

environmental factors has been difficult to analytically remove 
(Fairbairn and Bosch, 2021; Gunn et al., 2023; Luczak and Ramchan-
dani, 2019), and even retrospective accuracy metrics have often 
emerged as moderate in magnitude (Ash et al., 2022; Kianersi et al., 
2023; Richards et al., 2023; Croff et al., 2021; although see Didier et al., 
2023).

Here we report results of a large-scale validation study of a wearable 
alcohol biosensor integrating real-time objective alcohol use assessment 
and variable environmental testing conditions. Recent decades have 
seen advances in both hardware and computational tools with the po-
tential to advance transdermal alcohol measurement, including the 
introduction of a new generation of compact, rapid-sampling alcohol 
biosensor (NIAAA, 2015; Wang et al., 2021), and analytic approaches 
capable of analysis and forecasting based on complex time-series trends 
(Fairbairn et al., 2020; Fairbairn and Bosch, 2021). In the current study 
we assess the accuracy of a transdermal wrist sensor against objective 
alcohol use data collected among participants examined across variable 
environmental conditions. Transdermal data is translated into “real 
time” alcohol use estimates using machine learning algorithms aimed at 
addressing lags between ingested and transdermally emitted alcohol. 
More specifically, aims of the current project were as follows: 1) To 
assess transdermal alcohol sensor accuracy in predicting drinking vs. 
sobriety in real-time across variable environmental conditions; 2) To 
assess moderators of transdermal drinking detection accuracy, including 
person-level and within-person factors theorized to impact transdermal 
sensor output; and 3) To assess transdermal sensor accuracy for 
detecting binge or “high-risk” (≥0.08 % BAC) drinking (National Insti-
tute on Alcohol Abuse and Alcoholism., 2004).

2. Materials and methods

2.1. Participants

Participants were recruited via social media advertisements and 
posted notices in the local community. Individuals were excluded if they 
were especially light or infrequent drinkers (≤ 1 drinking day/week), 
reported a history of medical conditions for which alcohol consumption 
would be contraindicated, reported taking medications or other drugs 
with the potential to interact with alcohol, or indicated a history of 
adverse reactions to the type or amount of beverage administered in the 
study (see National Advisory Council on Alcohol Abuse and Alcoholism, 
1989). Individuals actively seeking treatment for alcohol problems, 
those with a history of severe psychiatric illness, non-English speakers, 
individuals with medical conditions contraindicating moderate aerobic 
exertion, and women who reported being pregnant or trying to become 
pregnant were also excluded. Participants consisted of 100 regular 
drinkers aged 21 + (Mage = 24.20; SD = 4.36; Range=21–46). Partici-
pants were 50 % female, and 41 % White. Participants reported drinking 
an average of 9.39 (SD = 5.06) and binge drinking 4.18 (SD = 3.87) 
days/month (see Table 1).

2.2. Procedure

2.2.1. Study Overview and Design
Study procedures took place over the course of 14 days and 

employed a hybrid laboratory-ambulatory design integrating observa-
tions drawn from both precisely controlled (laboratory) as well as 
ecologically valid (ambulatory) consumption contexts. Participants 
attended three experimental laboratory visits, held at 1-week intervals 
over the course of the study (Fig. 1). Laboratory visits also served as 
ambulatory orientation, check-in, and close-out visits. A detailed 
description of study methods is provided in Supplemental Materials.

2.2.2. Laboratory Procedures
The laboratory study arm permitted the acquisition of precise data 

surrounding quantity and timing of alcohol ingestion while also 
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facilitating systematic manipulation of environmental factors theorized 
to impact transdermal sensor readings, so ensuring adequate variability 
along these factors in the broader dataset (Anderson and Hlastala, 2006; 
Luczak and Ramchandani, 2019). Breath alcohol concentration (BAC) 
readings were taken at baseline and at 10-minute intervals following 
beverage administration. All participants received low (.03 %), moder-
ate (.06 %), and high (.09 % target BAC) alcohol doses across the three 
laboratory sessions (Fig. 2). To simulate environmental factors with the 
potential to confound TAC readings, laboratory sessions integrated an 
aerobic bicycle workout to induce perspiration (mild/8-minutes; 
moderate/20-minutes), timed arm/wrist movement to induce vari-
ability in skin-sensor distance (two 90-second bursts), and exposure to 
alcohol-containing products (e.g., hand sanitizer; See Figs. 1–2 and 
Supplemental Methods). Finally, to simulate variable consumption 
patterns, approximately equal numbers of participants were randomized 
to consume study beverages at a relatively rapid (.01 % BAC/3-minutes) 
or slow (.01 %/6-minutes) pace (see Table 1). The transdermal sensor 
employed in this study was the BACtrack Skyn, a compact, wrist-worn 
device (37 g; 4.7 ×2.5 ×0.6 cm) that links with a smartphone via 
Bluetooth and features passive TAC, motion, and temperature sensing 
(20-second sampling interval; Fairbairn and Bosch, 2021; NIAAA, 
2015). Devices employed in this research were originally shipped from 
the manufacturer 9/2021–5/2023. See also Supplemental Methods and 
Figure S1.

2.2.3. Ambulatory Procedures
Participation involved a 14-day intensive assessment period aimed at 

capturing transdermal device performance in real-world drinking envi-
ronments. Participants were instructed to wear the transdermal device 
throughout this period except for times when they were bathing or 
charging the device. During ambulatory assessment, participants pro-
vided prompted BAC readings via smartphone-connected breathalyzers 
(Ariss et al., 2023) in response to random smartphone prompts 4–6 
times/day, as well as at 30-minute intervals during drinking episodes. 
To ensure high-quality ambulatory BAC readings, participants under-
went laboratory training in mouth alcohol effects and received 
mid-study feedback and, ultimately, compensation commensurate with 
the validity and completeness of their ambulatory data. At the final 

study visit, after the completion of ambulatory assessment, participants 
reported on transdermal device acceptability, including their level of 
social and physical comfort in wearing the bracelet (1 = extremely 
comfortable; 9 =extremely uncomfortable) and their willingness to 
wear the bracelet beyond the end of the study (yes/no; see Supplemental 
Methods). Participants received $200 for attending all three laboratory 
visits and wearing the transdermal device throughout ambulatory 
assessment, and an additional $100 for responding to at least 70 % of all 
ambulatory prompts.

2.3. Data processing and analysis

All data required for the replication of results in this article, together 
with code permitting researchers to use the transdermal translation al-
gorithms developed here with their own data sets, are provided here: 
https://osf.io/bdthf/?view_only= 3554401322674c3ab33cecff 
2b7c27c9. Time-series features extracted from transdermal sensor 
output (e.g., TAC rise rate, quantiles) were entered into Extra-Trees 
machine learning algorithms (Geurts et al., 2006). To produce a model 
that might be applied for real-time BAC estimation, models included only 
transdermal sensor data preceding (not following) BAC readings 
(Fairbairn et al., 2020). We used 5-fold, participant-independent 
cross-validation to ensure that predictions were not over-fit to specific 
data points or participants. Model performance was evaluated on testing 
sets using area under the receiver operating characteristic curve 
(AUROC) calculated using nonparametric models accounting for the 
clustering of observations within participants. Moderators of device 
accuracy were examined at the within- (device wear time, device ship 
date) and the between- (sex, age, race, drinking history) participant 
level, selected as factors theorized to impact transdermal sensor output 
(Ash et al., 2022; Fairbairn and Kang, 2020; Luczak and Ramchandani, 
2019). Diagnostic thresholds were determined using the maximum 
Youden index, and sensitivity and specificity values were calculated 
using bootstrapping. Drinking episode start time was estimated at the 
timestamp of the first positive BAC reading. Finally, for models differ-
entiating no (0.00 %), low-risk (>0.00 %, <0.08 %), and high-risk 
(≥0.08 %) drinking levels,1 predictions were jointly estimated in a sin-
gle model, and resulting test statistics were averaged for models pre-
dicting each risk category to yield an omnibus AUROC value. See 
Supplemental Materials for the complete data analysis plan and details 
of data processing.

3. Results

3.1. Descriptives, compliance, and acceptability

3.1.1. BAC and alcohol use descriptives
A total of 12,699 unique BAC readings (6349 from field contexts; 

8054 >0.00 %) were collected for the purposes of the current study. 
Regarding ambulatory data, participants on average provided breatha-
lyzer readings in response to 69 % of prompts. Each participant provided 
an average of 63.49 (SD = 31.28) BAC readings across the 14-day 
assessment interval, engaging in 7.41 drinking episodes lasting on 
average 148.2 minutes (SD = 126.7) in duration. Peak BAC levels in the 
field ranged from 0.01 % to 0.27 % (M = 0.095 %, SD = 0.054). Within 

Table 1 
Participant sample characteristics and drinking rate condition.

Age

Mean (SD) 24.20 (4.36)
Sex (%)
Female 50
Male 50
Race (%)
Native American 6
Asian 40
Black/African American 9
White 41
Mixed race 4
Ethnicity (%)
Hispanic or Latino 24
Not Hispanic or Latino 76
Drinking Days/30
Mean (SD) 9.39 (5.06)
Binge Days/30
Mean (SD) 4.18 (3.87)
Heavy Drinker (%)
Non-Heavy Drinker 67
Heavy Drinker 33
Drink Rate (%)
Fast (0.01 % BAC/3 minutes) 45
Slow (0.01 % BAC/6 minutes) 55

Note: Binge drinking is used to refer to 4 or more standard drinks 
consumed in a single sitting for females and 5 or more for males.
Heavy drinkers are defined as those who reported ≥5 binge drinking 
days within the past 30 days.

1 For the purposes of the current research, a high-risk drinking episode is 
operationalized as one where BAC meets or exceeds NIAAA’s binge threshold of 
.08 % (National Institute on Alcohol Abuse and Alcoholism., 2004). BAC levels 
that do not meet these criteria are designated low-risk events. We adopt these 
labels for ease of reference and to reflect research documenting adverse 
drinking consequences linked with drinking episodes that meet or exceed the 
binge drinking threshold (e.g., Jones et al., 2018). Note, however, that episodes 
that are truly “low” vs “high” risk in terms of their potential for negative effects 
will inevitably depend on context and individual.
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the laboratory study arm, achieved peak BACs on low, moderate, and 
high-dose sessions were 0.032 % (SD = 0.011), 0.057 % (SD = 0.012), 
and 0.084 % (SD = 0.015) respectively. Additional BAC descriptives are 
provided in Fig. 3.

3.1.2. Transdermal compliance and user acceptability
A total of 5.39 million transdermal readings (28,615 hours of TAC 

data) were collected across the course of the study. Regarding compli-
ance, application of wear-detection thresholds (<26◦ Celsius) indicated 
that participants wore transdermal devices for the majority (Mdn =

92.79 %; SD = 15.54) of the ambulatory assessment period (Mdn =

12.99 days estimated wear time/participant). Participants rated trans-
dermal devices as moderately physically comfortable (M = 4.72, SD =
1.91) and highly socially comfortable (M = 2.84, SD = 2.08). Of par-
ticipants, 80.4 % indicated they would be willing to wear the trans-
dermal device beyond the end of the study (see Supplemental Measures).

3.1.3. Transdermal devices and device failures
A total of N = 38 transdermal devices were employed across all study 

participants. During the course of the study, devices were returned to the 
manufacturer and replaced in response to anomalies observed in the 
data (n = 5) and/or larger hardware updates from the manufacturer 
(n = 20). Median usage time for each transdermal device employed in 
the study was 666.83 hours (SD = 392.51; Range 130.57–1707.73). Gaps 

in transdermal recording occurred attributable to both protocol consis-
tent and non-consistent causes, including when devices were turned off 
for charging (freq: ~4–6 days) as well as due to device malfunction and 
user non-compliance (e.g., devices not charged as instructed). Across 14 
days of assessment, the median total duration of recording gaps per 
participant was 19.31 hours (SD = 52.61; Range 0–311), with gaps 
lasting a median of 3.19 hours (SD = 26.71; Range 0–121).

3.2. Transdermal sensor accuracy

3.2.1. Accuracy in detecting drinking vs. Sobriety
Analyses assessed accuracy for transdermal alcohol monitors in 

predicting drinking (>0.00 % BAC) vs. sobriety (0.00 % BAC) in real 
time. We first explored transdermal sensor accuracy in analyses 
including all data collected across study contexts, including laboratory 
and field settings. The accuracy of transdermal sensors in distinguishing 
episodes of alcohol consumption emerged as excellent (AUROC, 0.966, 
95 % CI, 0.956–0.972; Fig. 4A). Analyses yielded strong sensitivity and 
specificity, indicating the algorithm capable of correctly detecting 
89.8 % (95 % CI, 88.6 %-90.8 %) of true drinking and 90.6 % (95 % CI, 
89.5 %-91.7 %) of true sober moments. Regarding the time course of 
detection, approximately 70 % of drinking episodes were correctly 
identified for readings provided 0–30 minutes after the first positive 
BAC value, 92.2 % for minutes 30–120, and 93.6 % for minutes 120 + . 

Fig. 1. Laboratory-ambulatory study design with timeline and example data. Note. BAC data is scaled up by a factor of 1000 for visualization purposes. (A) Example 
of raw TAC and BAC data collected from a single participant in both laboratory and field contexts. Ambulatory assessment lasted 14 days, during which time 
participants wore transdermal sensors and supplied BAC readings in real-world contexts in response to custom prompts. Experimental laboratory visits doubled as 
ambulatory orientation, check-in, and close-out sessions. (B) During laboratory session 1, participants were oriented to ambulatory study procedures and engaged in 
experimental alcohol-administration. (C) At the midpoint of the study, participants received feedback on ambulatory data provided during days 0–7 and engaged in 
alcohol-administration Session 2. (D) During the final study visit, participants engaged in the final alcohol-administration session and returned study equipment.
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When data from field (i.e., real world) contexts was examined inde-
pendent of laboratory data, accuracy metrics were also strong (AUROC, 
0.941, 95 % CI, 0.927–0.955; Sensitivity 84.2 %, 95 % CI, 83.1 %- 
87.8 %; Specificity 88.8 %, 95 % CI, 86.3 %-89.8 %; Fig. 4B).

3.2.2. Moderators of detection accuracy
We next explored moderators of transdermal sensor accuracy in 

detecting drinking vs. sobriety for data collected across study contexts 
(Fig. 4D-I). Accuracy decreased with transdermal device usage as days of 
wear progressed within participants, with AUROC values decreasing 
from 0.976 (day 0–5) to 0.961 (days 5–10) to 0.944 (days 10 +; see 
Fig. 5). No significant differences emerged with respect to participant 
sex, race, age, drinking patterns, and transdermal device age (i.e., ship 
date; see Fig. 5).

3.2.3. Accuracy in determining drinking risk category
Models next examined drinking according to three risk categories: 

high-risk drinking, low-risk drinking, and sobriety. Results yielded an 
averaged omnibus AUROC value of 0.957. Models differentiating high- 
risk drinking from a combined comparison group of low-risk drinking 
and sobriety indicated excellent accuracy (AUROC, 0.941, 95 % CI, 
0.929–0.954; Fig. 4C), correctly identifying 89.3 % (95 % CI, 85.4 %- 
92.8 %) of true instances of high-risk drinking, and 86.4 % (95 % CI, 
82.2 %-88.1 %) of instances of sobriety/low risk drinking. Models 
differentiating between low- and high-risk drinking levels while 
excluding 0.00 % BAC values yielded moderate accuracy (AUROC, 
0.738, 95 % CI, 0.698–0.777; Sensitivity 58.8 %, 95 % CI, 50.6 %- 
76.9 %; Specificity 77.3 %, 95 % CI, 58.4 %-84.1 %).

4. Discussion

Wearable sensors are unique in that they provide objective alcohol 
use data while placing minimal demands on the drinker, so lifting 
engagement burden at times when cognitive and motivational resources 
are likely to be scarce. The current research indicates high accuracy for 
contemporaneous alcohol use detection via wearable alcohol biosensor 
across variable environmental conditions. Rates of detecting true con-
sumption and differentiating from non-consumption ranged from 84 % 
to 91 %. Models isolating drinking risk levels specifically within drink-
ing episodes (>0.00 % BAC) produced intermediate accuracy levels for 
distinguishing low- from high-risk drinking. Accuracy was strong for 
models differentiating high-risk drinking (≥0.08 % BAC) from a com-
bined comparison group of non-drinking and low-risk drinking. The 
new-generation sensors employed in this research were rated as 
acceptable by participants for longer-term wear.

Output yielded by perspiration-based alcohol sensors is complex 
(Anderson and Hlastala, 2006). On the basis of prior work, it has been 
unclear the extent to which transdermal estimates of drinking could be 
achieved with adequate accuracy and temporal specificity to permit 
widespread application (Fairbairn and Kang, 2020; Yu et al., 2022). 
Here we revisit transdermal sensor accuracy using machine learning 
methods applied to dense time-series data from new-generation, rap-
id-sampling sensors. Time-series represent a key tool for addressing 
problems of prediction lags, containing information on over-time trends 
and so potentially indicating not only where a signal currently is but also 
where it is going (e.g., time-series forecasting techniques; Box et al., 
1994; Fairbairn et al., 2020). Further, as environmental confounds can 
yield over-time patterns that diverge from those linked to true alcohol 
ingestion, time-series can further be leveraged to parse TAC signal from 

Fig. 2. Schematic of study design, manipulations, and conditions. Note. All participants consumed three doses of alcohol over three laboratory sessions, targeting 
peak BAC levels of 0.03 %, 0.06 %, and 0.09 %. Rate of consumption was operationalized as a 0.01 % increment increase in target peak BAC being associated with a 
corresponding 3-minute (fast) or 6-minute (slow) increment increase in the duration of the beverage administration period. The order and type of environmental 
manipulation were randomized both across and between participants to yield a balanced distribution. Products employed for ambient alcohol manipulations included 
hand sanitizer gel, alcohol-containing hand lotion, (simulated) spilled alcoholic drink, perfume, alcohol-based cleaning product, and hand sanitizer spray. Between 
laboratory sessions, participants provided prompted breathalyzer readings in real-world contexts. More details on laboratory and ambulatory procedures are pro-
vided in Supplemental Methods.
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noise. For example, a sudden spike in TAC is more likely indicative of 
environmental confound than is a gradual rise (Fairbairn and Bosch, 
2021). Yet in examining individual, decontextualized TAC readings such 
over-time information is lost. Here we translate transdermal data using 
machine learning algorithms capable of capturing complex, non-linear 
patterns in time-series data (Geurts et al., 2006). Algorithms are 
trained using a large sample of precise BAC readings collected across 
diverse environmental conditions, producing models that display strong 
accuracy levels for transdermal sensors in contemporaneous alcohol use 
detection.

In the future, as larger transdermal datasets accrue, application of 
data-hungry methods such as transformer neural networks might facil-
itate transdermal measurement of still more detailed drinking metrices, 
including precise BAC values, while also providing increased ability to 
discriminate low- from high-risk drinking. Even in the absence of such 
fine-grained measures, however, a range of potential applications exist 
for a compact sensor capable of passive, objective drinking and sobriety 
detection, especially in light of links between sensor output and alcohol- 
related consequences (Russell et al., 2022). For example, a preventative 
health tracker capable of keeping a long-term record of drinking and 
high-risk drinking days could increase health awareness among broad 
populations of drinkers (Takacs et al., 2014). A medical monitor might 
serve to provide an objective record of consumption for healthcare 
providers in treating patients with conditions requiring the cessation or 
moderation of alcohol use (e.g., cardiovascular disorders, diabetes; 
Burton and Sheron, 2018; Howard et al., 2004). Finally, a sensor with 
the potential for contemporaneous drinking detection might provide a 
range of supports for individuals with alcohol use disorders, including 
by triggering real-time intervention in response to relapse 
(Nahum-Shani et al., 2017).

Gaps in transdermal device recording tended to be brief and were 
generally consistent with protocol-compliant behaviors on the part of 
participants (e.g., device powered off for charging). These results stand 
in contrast to findings for early new-generation sensor prototypes, 
where sensor failure was relatively frequent (Fairbairn and Kang, 2019). 
Potential for sensor degradation exists for fuel-cell based transdermal 
devices due to humidity buildup within the gas chamber between the 
sensor and skin (Ash et al., 2022; van Egmond et al., 2020). Evidence of 
some sensor degradation over the course of continuous wear was evident 
in the current sample. For the 2-week time interval captured here, 
however, accuracy rates were consistently strong. It is notable that, in 
the current study, device wear time (i.e., days of wear by a given study 
participant), but not overall device age (i.e., device ship date), moder-
ated sensor performance. One possibility is that the sensor aeration and 
cleaning afforded by periods of non-wear between participants served to 
interrupt humidity buildup and refresh sensors, and that such breaks 
integrated into future research and applications might improve sensor 
performance. Related, devices in this study were replaced in response to 
data anomalies, presenting circumstances potentially favorable to de-
vice performance. The extent to which such degradation would emerge 
as problematic over longer time periods under typical day-to-day use 
conditions requires further investigation, as does the extent to which 
performance degradation is permanent vs. might rebound following a 
period of rest, and whether or not technological advances in sensor 
manufacturing can eliminate these losses.

Regarding the time course of drinking detection, sensors identified 
most (70 %) cases of alcohol consumption for data points within 
30 minutes of the time of first positive breathalyzer reading, increasing 
to 92 % by minutes 30–120. In the current investigation, transdermal 
device accuracy was examined only at times of active BAC assessment. 

Fig. 3. Descriptives for breathalyzer data employed in model training. Note. BAC readings employed for machine learning model training displayed above. (A) The 
full dataset comprises 12,699 breathalyzer readings provided by 100 participants over 14 days. Each row represents one subject, with breathalyzer readings rep-
resented by dots. For illustration purposes, in the case of participants whose final study sessions were delayed (N = 5), date-stamps for these visits are rescaled to 
display on Day 14. (B) and (C) represent the distribution of BAC readings provided by subjects and the distributions of context for BAC assessment.
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Fig. 4. ROC curves depicting transdermal sensor accuracy. Note. (A) Receiver operating characteristic (ROC) curve displaying results of machine learning model for 
detecting drinking (>0.00 % BAC) vs sobriety (0.00 % BAC) in both laboratory and field contexts. (B) ROC curve for model detecting drinking vs sobriety in field 
contexts only. (C) ROC curve for model detecting high-risk drinking (BAC ≥ 0.08 %) vs a combined comparison group of low-risk drinking and sobriety (BAC<.08 %). 
(D) – (I) Moderators for drinking vs sobriety detection accuracy.
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Additional research is needed to chart the precise time course from the 
point of drinking initiation to first transdermal alcohol use detection. 
Such research would be important prior to the initiation of more time- 
sensitive transdermal device applications wherein unanticipated detec-
tion delays might result in harm to the drinker or others (e.g., real-time 
driving advisability feedback; Fairbairn and Bosch, 2021).

TAC dynamics have been theorized to vary substantially across in-
dividuals due to variability in the physical properties of the stratum 
corneum, including differences in skin thickness, hydration, and 
permeability (Anderson and Hlastala, 2006; Luczak and Rosen, 2014). In 
the current study no significant differences in transdermal detection 
accuracy emerged according to sex, race, age, or prior drinking history. 
Nonetheless, although the sample for the current study was large in 
comparison to many prior studies (Yu et al., 2022), sample size re-
quirements for between-subject moderator analyses are high. Addi-
tionally, although no individual-level differences reached significance, 
yet some non-significant group effects (e.g., race) might warrant ex-
amination in larger samples. Future research might employ over-
sampling techniques to increase power for detecting variability across 
individuals and ensure the development of transdermal alcohol detec-
tion algorithms generalizable across populations.

Additional limitations and future directions should be noted. The 
current study comprises, to our knowledge, the largest database of 
objectively-assessed high-risk drinking episodes (>.08 %) captured in 
transdermal sensor research to date (see Yu et al., 2022). But high-risk 
episodes were still relatively scarce in this sample (n = 618; Fig. 4). 
Future research should revisit the question of low- vs. high-risk drinking 
differentiation in larger datasets. Related, in the current study we 
operationalized drinking risk level according to NIAAA’s binge drinking 

threshold (National Institute on Alcohol Abuse and Alcoholism., 2004), 
yet alternative thresholds exist for the determination of high- vs. 
low-risk drinking. Future research might explore the accuracy of trans-
dermal sensors for detecting drinking episodes both above and below the 
.08 % threshold. Further, although initial data was presented, a thor-
ough examination of user acceptability was beyond the scope of the 
current study (Ash et al., 2022; Rosenberg et al., 2023). Additional an-
alyses, including qualitative examinations and models exploring indi-
vidual differences, are needed to understand user experience with these 
sensors. Finally, although our dataset explored the accuracy of trans-
dermal sensors in the context of a dataset that integrated diverse 
contextual conditions, an examination of context-level moderators was 
beyond the scope of this initial investigation. Future research is needed 
to examine context-level moderators of transdermal sensor accuracy, 
including controlled testing environments, physical exertion, 
skin-sensor distance, and ambient alcohol.

In sum, for nearly a century, researchers have known that ingested 
alcohol can be detected within perspiration (Nyman and Palmlöv, 
1936). Alcohol’s journey to the skin’s surface is complex, dependent on 
activity of the digestive, circulatory, endocrine, and integumentary 
systems, spurring questions surrounding the viability of contempora-
neous perspiration-based drinking detection (Anderson and Hlastala, 
2006). Additional research is needed to explore the potential of 
perspiration-based sensors for detecting more fine-grained drinking 
metrics, including precise BAC and/or standard drink estimation. Re-
sults of the current study nonetheless lay the foundation for wearable 
alcohol sensors with applications across medical, intervention, preven-
tion, and research domains.

Fig. 5. AUROC and confidence intervals depicting transdermal sensor accuracy across moderator classes. Note. Area under the receiver operating characteristic 
curve (AUROC) and corresponding 95 % confidence intervals across moderator classes. Heavy drinkers are defined as those who reported ≥ 5 binge drinking days 
within the past 30 days. Binge drinking refers to 4 or more standard drinks consumed in a single sitting for females and 5 or more for males. Transdermal Device Wear 
Time is defined as days of continuous wear time by a single participant within the study. Transdermal Device Age is defined as months elapsed since original device 
ship date.
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